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EDITORS« NOTE 

The Soviet physicist V.A. Pock is well known by physicists for hit 
work in quantum mechanics, particularly in connection with the Hartree- 
Fock theory of self-consistent fields« The purpose of this collection 
is to acquaint the reader with Fock's more recent work on the propaga- 
tion, refraction, and diffraction of radlowaves. Fock's early papers on 
this subject (the first fire papers in this collection) appeared in 
English almost a decade ago* However, all of his more recent work has 
been published in Russian and is relatively unknown outside the Soviet 
Union, 

The translations in this collection have been based upon transla- 
tions obtained from several sources. Mr, Herman 7. Cottony of the 
National Bureau of Standards and Kiss A. Plngell of the Naval Research 
Laboratory, respectively, made the original translations of Chapters 
VI and XI of this collection. The translator of Chapter VIII is un- 
known to the editors. The remainding chapters were translated by 
Morris D0 Friedman. Chapters VIII, IX, and X were made by Morris D. 
Friedman, Inc., Newtonville, Massachusetts. Chapters XII and XIII were 
made in cooperation with Lincoln Laboratory. 

According to the Library of Congress scheme for the transliteration 
of the Russian alphabet, Fock's name appears as Fok. However, because 
of the more general use in scientific literature of the form Foek the 
editors have retained this form in this collection. 

N.A.L, 
P.Bo, Jr. 
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V.A, POCK'S CONTRIBUTIONS TO DIFFRACTION THEORY 

7.1. Smirnov 

1. INTRODUCTION 

V„A, Foek became Interested in diffraction problems comparatively 

recently. Within a short time he succeeded in obtaining numerous 

results which are very important both in theoretical and in practical 

aspects» By forecasting the paths of further investigations in this 

field, they undoubtedly are epochal in diffraction theory. 

The solution of the problems of electromagnetic wave diffraction 

consists of finding solutions of the Maxwell equations subject to 

specific initial and boundary conditions on the diffracting surface and 

radiation conditions at infinity. The initial conditions are often re- 

placed by the requirement that the solution be sinusoidal in time. 

Fock devoted himself to an analysis of problems of the last kind. Prior 

to the Fock investigations in the theory of electromagnetic wave dif- 

fraction, only solutions for a small number of problems for obstacles 

of a specific shape were known, such as: the infinite wedge, cylinders - 

circular, elliptic and parabolic - and also for the sphere. In addi- 

tion, the problem of diffraction from a paraboloid of revolution, solved 

by Fock himself in 1944« should be added to the above list. 

1 
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The previous solutions of the problems mentioned above,, which 

were represented by series or by integrals, were not very useful in 

the important practical case when the wavelength is small in comparison 

to the dimensions of the obstacle, and they should be considered as 

only the first step in solving the problem. The next step must be the 

derivation of formulas from which qualitative physical consequences 

can be obtained and which are, in addition, suitable for practical 

computations, Hence, one of the possible directions of work in dif- 

fraction theory was the development of a method of isolating the prin- 

cipal parts out of the complex formulas which constitute the exact 

solution of the problem» The Pock investigations were made in this 

direction when solving the problems of diffraction from a conducting 

sphere as well as from a paraboloid of revolution. Naturally, the 

method cited is applicable only in those few cases when an exact solu- 

tion can be constructed successfully, Consequently, an urgent need 

existed for the creation of an approximate method of solving diffrac- 

tion problems which, while being general, would lead to relatively 

simple formulas. 

The fundamental works of Fock on diffraction are devoted to the 

construction of such an approximate method and to the solution of a 

number of practical important problems by using this methoda Pock 

developed and used the parabolic equation method proposed by Leontovich. 

This permitted him to give not only new simplified derivations of 

results he had obtained earlier by other means but also to generalize 

11 



them in various directions (to take the finite conductivity of the 

body into account; to determine the field close to the surface as well 

as on the surface itself; to take atmospheric inhomogeneities into ac- 

count in the problem of diffraction of radiowaves around the earth's 

surface). 

As is every approximate method of solving boundary value problems, 

the Fock method is based on the snallness of certain parameters en- 

countered in the problem. The quantities which are usually small in 

the problems of radiowave diffraction are: -—- and ^4-, «here |*7|     K 

77 «<? ♦ i hjrar 
0) 

is the complex dielectric constant of the diffracting 

body; ?{. is the wavelength of the incident wave; S is a quantity of the 

order of the radius of curvature of the surface of the body. 

If J?7j - ce (perfect conductor), then the field within the conduc- 

tor is zero, i.ee, it is known in advance« This circumstance permits 

the diffraction problem to be formulated only for the space outside the 

body, which leads to substantial simplification. The situation in the 

Imperfect conductor case is similar if the inequalities 17)\ •> > 1 and 

JL../71T » 1 are satisfied» 

In this case, the field within the conductor appears to be van- 

ishingly small everywhere except in a surface layer of thickness of 

order -fyj^J, where the influence of this layer can be taken into 

account by using boundary conditions for the external field 

(1) 
w, 

^-V^X-aA) - y.-w >etc- 
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where J . J , J are the components of the current density; n, n , n 

are the unit vector components normal to the body surface« Acad. MCA, 

Leontovlch first suggested the aforementioned conditions in a rather 

different form* 

Consequently, the approximate formulation of the diffraction 

problem is thereby reduced to a problem involving the fields exterior 

to the body, A further essential simplification in problems of radio- 

wave diffraction from bodies of arbitrary shape results from the prin- 

ciple of the field being local in the half-shadow region« 

If the electromagnetic field near the surface of a conducting 

body were to be determined successfully, and, therefore, the current 

distribution in the surface layer, then the solution of the diffraction 

problems would be attained by simple well-known formulas for the vector 

Potentiale The field in the Illuminated region near the body is subject, 

with a high degree of accuracy, to the Fresnel laws of reflection, and, 

therefore, can be determined easily; the field decreases rapidly to 

zero in the shadow region» 

Consequently, the unattainable link in the approximate solution of 

the diffraction problems is the transition region (half-shadow) located 

near the geometric shadow boundary and with the shape of a band of width 

d - y~: Rg , where B0 is the radius of curvature of a normal section 

of the body in the incident plane, 

Fock succeeded in showing that the electromagnetic field in the 

half-shadow region is, to the accuracy of quantities of the order of 

IT 
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y^ , of local character, iee.,  it depends only on the values 

of the incident wave field in the neighborhood of the given point* on 

the geometric shape of the body near this point, and on the electric 

properties of the conductor. 

After the principle of the local field had been established, there- 

remained only to find the solution of the diffraction problem for * 

convex body of sufficiently general shape, and to derive the approxi- 

mate formulas for the field on its surface. It is convenient to take 

the paraboloid of revolution as such a body. In solving the problem of 

plane wave diffraction from a paraboloid, 7.A, Fock used separation of 

variables in parabolic coordinates« He constructed the exact solution 

in the form of integrals and performed the approximate calculation of 

these integrals under the assumption that ka>> 1, where k is the 

wave number and a is a parameter of the paraboloid of revolution: 

x2 ♦ y2 - 2az - a2 » 0o 

The characteristic direction of the work on diffractlor. explained 

above is sufficient to indicate the important principles of the methods 

developed« Basically, these methods reduce to the following: 

Fock Indicated an effective method of approximately evaluating in- 

finite series and integrals (containing a large parameter) which repre- 

sent the exact solutions of certain problems of electromagnetic wave 

diffraction, This method permitted him to develop, for example, a 

rigorous theory on radiowave diffraction around the earth's surface 

surrounded by a homogeneous atmosphere   '{"Diffraction of Radiowaves 

X' 
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Around the Earth's Surface", 1946) . He was also the first to establish 

the very Important principle of the local character of the electromag- 

netic field in the half-shadow region,, usfnq   widely the Leontovlch 

conditions2 in the approximate formulation of radiowave diffraction 

problems. 

This work afforded him the opportunity to construct an approximate, 

but yet sufficiently accurate for practical needs, theory of radiowave 

diffraction from conductors of arbitrary shape as well as a theory of 

radiowave propagation around the earth taking inhomogeneities of the 

atmosphere into account. The explanation of this theory is given in 

"Theory of Radiowave Propagation in an Inhomogeneous Atmosphere for a 

Raised Source», (1950)3, 

These works on diffraction have played a very important part in the 

history of this question and, at the present time are among the clearest 

attainments in diffraction theory and its applications. Let us turn to 

a more detailed explanation of some of these works. 

The problem of radiowave diffraction in a vacuum relative to a con- 

ducting sphere is solved in "Diffraction of Radiowaves Around the Earth's 

Surface"\ 

Let the sphere be of radius a and be characterized by the di- 

electric constant £  , the conductivity o" and the magnetic permeability 

unity. Let the spherical coordinates (r,8,0 be introduced and let a 

vertical electric dipole be placed at the point r ■ b, 0 » 0, where 

b > a. The electromagnetic field excited by such a dipole can be ex- 

pressed by means of the Herta function U(r,9,?) which satisfies the 

equation 



(2) Au♦A - o 

Hence, in order to determine the value of the field on the spheresi 

surface, It is sufficient to know the quantities: 

(3) ÜL - U(a,9,<p) and U' - -5M. 
.       9r 

r-a 

In 1908, Mle obtained an analytical representation for the function 

0 as an infinite series of spherical functions. The extremely poor 

convergence of the series prevented qualitative physical consequences 

from being obtained and prevented practical use of the aforementioned 

exact solution of the problem. A major step toward a practical use of 

these series was made by Watson in 1918. But the transformed form of 

the solution was still unsatisfactory, both because of its complexity 

and because it was only applicable In the geometric shadow region 

(l.e<, far from the horizon). Only in 1945 did Fock succeed in obtain- 

ing an expression for the Hertz function suitable for all cases. 

Fock transforms the series for Uft and U* into complex integrals. 

But, in contrast to the precedirg authors who tended to reduce the 

integrals to a sum of residues, Fock isolated from the Integrals a 

principal term which yields sufficiently exact values for the functions 

investigated. 

It was shown in this work that if waves passing through the thick- 

ness of the earth and waves circumscribing the earth because of dif- 

fraction are neglected because of their smallness, then the value of 

Ut can be represented by the following integral 

vii 
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to U = 
• it" 

c 

«w /»• 
wk ere 

(5) ?M a C- ' <W 

* 2 1 

(6) 5; «   w 

rrr+o        U   *       '*    2     r /-» 
\ 

(*)    XfffPj« jfea£L.   *« jiHO-i» the wavelength) 

(9)      V ***, w + /±2£. 

*&tßtf\  *) i» the hrpergeooetric function; the contour C is a line 

intersecting the positive part of the real axis going downward (to the 

left of the poles of <f(r)), 

A similar Integral is obtained for Uft« The essential feature of 

this method of approach is that the integrals obtained can be calculated 

easily and with great accuracy for any value of 0. 

vttl 



The characteristic parameter of the aforementioned Integrale it 

the quantity P "y 3 eo* f   "here f  Is the angle between the 

rertical at the observation point and the source direction. If p» 1 

and the observer is in the line of sight region (more accurately: if 

ich cost>>l» where h is the height of the source above the earth), 

then the & ""'uation of the integrals leads to the well-known "reflec- 

tion formula11. This evaluation of the Integrals leads to the Weyl-van 

der Pol formula valid for points at large distances from the source 

but still well within the lina-of-eight. 

The half-shadow region (where p «1), for which approximate 

values of the fi*ld were not known) is of greatest interest« A method 

is indicated in this work of evaluating the integrals for this case 

and the following formula is obtained 

r 
In which w^(t) is the complex Alrey function related to the Hankel 

function of one third order by the relation 

öD ^(o . yf .* 3 (. t)* „&> [|(-tr]. 

The contour T   goes from ie to   0   and from   0  to   ♦• j 

if 
ft 

11 

I 

<*>      ..(ff..r-(!)\,.rff- 
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The formula for the half »shadow region la the main result of this 

work« It is applicable in all cases of practical interest. It trans- 

forms into the Weyl-van der Pol formula far from geometric shadow in 

the line-of-sight region. This formula can be reduced to a rapidly 

converging series when the transition is made into the shadow region 

where (-p)>>l. 

In the work "Solution of the Problem of Propagation of Electro- 

magnetic Waves Along the Earth's Surface by the Method of Parabolic 

Equations" (written jointly with H.A. Leontovich) , a problem is 

analyzed which is similar to the problem in the paper mentioned above 

but the method is essentially different« 

The influence of the earth's surface is taken into account by the 

Leontovich approximate boundary conditions and terms in the field equa- 

tions are neglected which are small and are of the order of c rst and 

■r~~ • As a result, the "approximate" formulation of the problem for 

the spherical earth case is simplified substantially and is reduced to 

the problem of solving the parabolic equation 

(13) &T+   Jfz*Z\±L ♦£*.]. 
dy2 [V      xjdj      3xj 

in the region exterior to the earth and subject to the additional 

conditions 

(14) 2l 6*7} 
w- 2 

- 0 and lim ,—  » 0. 

|y«0 x-*0 
y>o 

yr 
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It Is difficult to estimate the error Introduced by discarding the 

"small" terms when using this method. To do this the well-known 

Fresnel "reflection" formula must also be considered. The essential 

advantage of the parabolic equation method is its great simplicity as 

well as the possibility of solving more complex problems (for example, 

wave diffraction from bodies of arbitrary shape). 

In this work the first ease considered is that in which the 

earth is assumed to be planar. Then the spherical earth case is con- 

sidered and the same formulas are obtained by using the parabolic 

equation method as had been previously obtained by approximately 

summing the series which yield the exact solution of the problem« 

The agreement between results obtained by these two methods provides 

a justification for the use of the parabolic equation method in 

problems of radiowave diffraction from good conductors. Fock used 

this method widely in later works on diffraction. 

In the work "Propagation of the Direct Wave Around the Earth with 
5 

Due Account for Diffraction and Refraction", the problem Is solved 

under the assumption that the surface of the earth is homogeneous as 

well as that the dielectric constant of the air is a function C Ah) 
9 

only of the height h - r - a of points above the horizon. A vertical 

dlpole performing harmonic oscillations defined by the factor e'^> 

is placed on the surface of the earth at the point r - a, 0*0. 

A rapidly varying factor is isolated from the Hertz function U 

and a new "slowly" varying function U2 is introduced by means of the 



formula 

(15) 
•*-u. 

*Q(h)r /sTST 

where a <* a6 Is the length of are on the terrestrial sphere from the 

point where the dipole is to the point above the earth at which the 

observer is situated,, ., 

The author neglects quantities of order \~Z7J   in the equation 

obtained for ü^. After introduction of the nondimensional variables x 

and 7 by means of the formulas 

(16) 

where 

. - jfPi *z 
k 

a - 1  £'(0)  is the equivalent radius of the 

a   iriö) 

earth's surface, and after introducing the new function   w^   by means of 

the formula 

(17) U„ 
*0(o)y5" 

the problem is reduced to determining the function Wj^y) from the 

equation 

(18) *\ dw. 

9y2~ *   l iT" * r(1 * 8)Wl  "   ° ^ >0) 

under the conditions 

adi 
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(19)  -—" ♦ V* 

0V 
- 0 

y»o y>0 

and the natural radiation condition for h >>1. The quantities q 

and g, entering in the formulas reduced above, have the following 

values 

>Rs £fi) <&4m./M 

Investigation of the equation for w^ shows that if g ■ 0 and if 

the radius a is replaced by the equivalent radius of the earth a*, 

then the mathematical problem is reduced to exactly the same form as 

when the atmosphere is absent. In the general case, g can be con- 

sidered as a function of the product Ay,  where A - -  .  0 

hoV 2k2 

a «mall parameter« The solution of the problem is successfully repre- 

sented by the contour integral: 

(21) 
e1^ 

V5F 
f eixt     fj&t) 

I  5B dt, 

y-0 

where f (y,t) is an entire transcendental function with a definite be- 

havior at infinity and satisfying the equations 

(22) 

dy2 
♦ [y - t ♦ yg(/0y)] f 0j 

xiii 
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The contour 1  is infinite and encloses the first quadrant of the 
t plane. 

Investigation of the solution of the problem constructed shows 

that the laws of geometric optics are correct in the line-of-sight 

region far from the horizon. The following inequality is the condition 

for this 

(23) 7 kh4 

2s 
•»1 . 

The solution transforms into the Weyl-van der Pol formula for small 

values of x and y and for large values of  p ■ Jy-^— cos ^- « 

The investigation of the solution in the half-shadow region permits the 

conclusion that the wave reaches the horizon with an amplitude uid 

phase corresponding to the laws of geometric optics for an unbounded 

medium and undergoes diffraction according to the law of the focal 

field in the half «shadow region at the horizon. 

This result agrees completely with the ideas of L.I. Mandel'shtam 

that the properties of the soil are essential not along the whole ray 

trajectory in radiowave propagation along the earth's surface but only 

in that region where the transmitter or receivers are located. 

Let us turn to the work in which the problem diffraction from an 

arbitrary convex surface is analyzed. 

An electromagnetic wave incident on a conductor excites surface 

currents which, in turn, are sources of scattered waves. Consequently, 

xiv 
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tu essential step in the solution of the plane wave diffraction prob- 

i«c from a conductor of arbiträr/ shape is to find the currents excited 

on its surface. 

In the work, "The Distribution of Currents Induced by a Plane Ware 

6 
on the Surface of a Conductor", the current distribution excited by a 

plane wave on the surface of a convex* perfectly conducting, suffi- 

ciently smooth body of arbitrary shape is analyzed under the condition 

that the length of the electromagnetic wave is very small in comparison 

with the body dimensions and the radii of curvature of its surface, A 

fundamental result of the work is the proof that the field has local 

character near the geometric shadow boundaries« 

It is shown in the work that when the incident wave is polarized 

with the electric vector in the plane of incidence the current distri- 

bution near the boundaries cited is expressed through a universal 

(identical for all bodies) function G(^) of the argument £   " "X» 

where / is the distance from the geometric shadow boundaries meas- 

ured in the incident plane and d is the width of the half-shadow 

region. An analytic expression is derived for the function G(£)   and 

detailed tables are given* 

The solution of the problem of the current distribution is based 

essentially on the study of the solution of the integral equation for 

the current density j on the surface of the perfect conductor. If 

the monochromatic electromagnetic wave H ■ H  e~iKCX' fall» on the 

conductor and if the following notation is introduced 

XT 
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(24) '" (1-a*". 7 - ££,*«] , 
«- tb. iMl-*, int.g^ .^tlon u obuiMi for tte 

rent density 

(25) 7 

where "n* is the unit vector normal to the conductor surface; "? and 

r' are radius vectors of fixed points of the surface and of points with 

the surface element dS' and R- I?-"?'! • 

As an investigation of the integral equation in the case of very 

large values of k (i»e,, snail wavelengths /[ ) shows, it can be con- 

sidered, with enough accuracy, that J ■ 2j*3C on the illuminated part 

of the surface (which corresponds to Fresnel reflection theory and 

J - 0 in the shadow part. In the neighborhood of the geometrical 

shadow boundaries, the integral equation shows that in a bandwidth of 
order 

(26) 
d - 

v vr  o * 

where RQ is the radius of curvature of a section of the body surface 

by the incident plane, the current density and, therefore, the field 

has an approximate value dependent only on the value of the external 
-♦ex 

field H  in the point under investigation, the geometric character- 

istics of the surface element and on the electric properties of the 

conductor. Such a result means that universal formulas for the current 

xvi 
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density on the surface of a perfect conductor In the half-shadow re- 

gion can be obtained from the solution of the diffraction problem for 

the particular ease of a convex surface. The universal formulas men- 

tioned are obtained by considering the problem of plane wave diffrac- 

tion from a paraboloid of revolution. 

The result is 

1     p v'(t) 

«here w(t) Is the complex Airey function and 1 is a contour in the 

2 
complex plane going from infinity to zero along the line arg - 4- If 

and from zero to infinity along the positive part of the real axis« An     1 
% 

investigation of the asymptotic values of G(£) for large positive and      I 

negative values of £   shows that the current density "3* transforms       J 

continuously when the transition is made from the half-shadow into the     | 

line-of-sight or into the shadow regions, into the values 2Jex and       | 

J ■ 0, respectively. Detailed tables are constructed for the function      | 

Gtf). | 

The result ot the preceding work is generalized in "Field of a        | 

Plane Wave Near the Surface of a Conducting Body" in that, first, the 

field is determined not only on the body surface itself but also in a 

certain surface layer with thickness small in comparison with the radii 

of curvature; second, the body is considered to be not a perfect, but 

only a good conductor in the sense that the M.A. Leontovich conditions 

Hold for the tangential field components on its surface« Furthermore. 

xvil 
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the polarisation of the incident wave may be such that the electric 

vector lies in or ia perp* dicular to the plane of incidence« 

Let us discuss the Fock work, "Fresnel Diffraction from Convex 

Bodies», (1951)7. 

Considered in this work is the diffraction from a sphere, wherein 

refraction of the atmosphere is not taken into account. It is con- 

sidered that the source and the observer are above the surface of the 

earth, where h^ is the source height and h, is the height of the 

observation point» The field is expressed through the two solutions & 

and w of the equation All ♦ k U ■ 0. The following notations are 

introduced in addition to those used previously: 

(28) 

(29) 

'1 -(-T)"^ *2   -(-T)~**V> 

q -(-Y) <?♦«"* H qx -(-^J (^-D i. 

The following formulas hold near the surface of the sphere: 

«ika9 
(30) Ü 

a -ye sin e 
V (x,yi,y2#q) J 

(3D 
eUcae 

V {x,fif7z»%) » 
a ye sin e 

and the attenuation factor 7 is expressed by a certain contour integral 

containing two Airey functions. All these results are contained in the 

work "Field from a Vertical and Horizontal Dipole, Raised Slightly Above 

xviii 
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t£e Earth1« Surface", (1949)** and in the 1951 work, an approximate ex- 

pression is given for 7 in the region of the shadow cone. Hence, it 

it considered that the parameter defined by the formula 

is large and the quantity £ ■ x - Vyvj^ - JFf£  *8 finite or snail« 

Two functions are introduced 

(33)        '(«> 
..*MF i jx*. 

(34) g(oÖ 

Then the approximate expression   7(x^y,, To»**)   is the following for 

£ ^ 0   in the shadow cone 

(35) V - 
v*- i6>„ 

^ 

ft(rt) - g(f) ♦ _i-g*(<f)l 

We do not cite the expression for CO   • The principal term is 

h*(£ )# proportional to the Fresnel integral. It is independent of 

the material of the diffracting body. Superimposed on the diffraction 

picture (Fresnel diffraction) determined by this term is the background 

dependent on the function g(£) varies slowly in comparison with the 

principal term. This background depends on the material of the dif- 

fracting body. 

Jdx 

*■ 
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3. See Chapter Tu of this collection. 

4. See Chapter 17 of this collection. 

5. See Chapter 71 of this collection. 

6. See Chapter II of this collection. 

7. See Chapter K of this collection. 

6, See Chapter Till of this collection. 



I. NEW METHODS IN DIFFRACTION THEORY 

V. A. Fock 

The general problem of the theory of diffraction of electro- 

magnetic waves consists in finding a solution of Maxwell's 

equations, having prescribed singularities (field sources) 

and satisfying prescribed boundary conditions and conditions 

at infinity. 

The solution of this problem presents serious mathe- 

matical difficulties, which arise chiefly from the necessity 

of taking into account the geometrical shape of the obstacles 

on which the wave is falling. The problem is somewhat 

simplified if only monochromatic waves of given frequency 

are considered, but the difficulties are still so great, that 

the problem has not yet been solved, except in cases when the 

obstacle is of a particularly simple form. The best known of 

these are the cases of a perfectly reflecting half-plane or a 

wedge, the cases of a sphere and a circular cylinder. 

The cases of an elliptic and a parabolic cylinder have 

•lso been considered, and the field of a plane wave incident 

on a perfectly reflecting paraboloid of revolution (oblique 

incidence) has recently been obtained by the author. In the 

few cases enumerated a rigorous solution of the problem in the 

/©m of an infinite series of integrals has been obtained. 

(D 

*•» 
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The aim of si theory is to give a picture reproducing all 

the qualitative and quantitative features of th« phenomenon 

considered. This aim is not attained until th« solution obtained 

is of a sufficiently simpl« form. If the rigorous solution has 

a complicated analytical form, it constitutes only the first 

step; a second step must be made - the derivation of formula^ 

suitable for numerical calculations. 

This second step may be as difficult as the first one. To 

give an example, we may mention that the problem of diffraction 

of electro-magnetic waves around a sphere was solved rigorously 

some 40 years ago (Mie). This problem Includes that of the 

propagation of radio-waves along the surface of the earth. 

Owing to the slow convergence of the series involved, the 

general solution could, however, not be applied to the latter 

problem until 1918, when a transformation of the original series 

into another rapidly converging series was found (Watson). But 

the improved form of tho solution was still unsatisfactory in 

some respects, being very complicated and applicable only in 

the region of the geometrical shadow (far beyond the line of 

horizon). A far more satisfactory form of the solution, 

applicable in all cases of practical importance, has been 

recently found by the author.  Thus, the way from the rigorous 

theoretical solution to the approximate practical one took about 

40 years of research. 

(2) 



To find first a rigorous solution of a diffraction problem 

and then to transform it into another form suitable for numerical 

calculations - this straightforward method is, however, of a very 

limited application. It can only be applied to the few problemst 

admitting a rigorous solution in form of series of integrals. 

In other cases (especially when the diffracting obstacle 

is of arbitrary shape) attempts have been made to reduce the 

problem to integral equations. These attempts have proved 

successful from the theoretical point of view; but with the 
2 

exception of a paper by the author, no use has been made of 

the integral equations for the practical solution of the 

problem, the general theory of integral equations being quite 

useless for purposes of numerical calculation. 

An approximate method, sufficiently general and leading 

to sufficiently simple formulas is thus urgently needed. In 

the following we Bhall outline the principal ideas of such a 

method, proposed and developed by the author. 

Every approximate method is based on the smallness of some 

parameters involved in the problem. We have to consider which 

of the parameters of our problem may be regarded as small. 

We are usually concerned with the propagation of waves in 

air, i.e., in a medium with properties widely different from 

those of the scattering bodies (obstacles). The electrical 

properties of these bodies are characterized by means of the 

complex dielectric permeability 

(5) 
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CD (1) 

(c denotes as usual the dielectric constant, T - the conductivity 

of the medium, co - the frequency). Now it is essential that in 

most cases \r\\  » 1. Thus we may choose as one of the small 

parameters of the problem tue inverse value of |TJ | or the 

quantity 1:  I |TJ I • 

Next, the wave-length X in vacuo is usually very much 

smaller than the radii of curvature of the scattering bodies. 

We thus have another small parameter - the quotient X:R, where 

R is the radius of curvature of the obstacle. It is convenient 

to take instead the quantity 

1 

m 
X 
"53? (2) 

In addition to the two small parameters defined above, 

there may be others, depending on the position of the point 

of observation. For instance, in the problem of the propaga- 

tion of radio waves along the earth surface the angle of 

inclination of the ray to the horizon may be regarded as small. 

Let us consider the consequences of the fact that the 

parameters 1:; I m and l:m are small. In the limiting case 

I T) I « oo (perfect conductor) a great simplification arises 

from the fact that the field is known beforehand inside the 

conductor (this field being equal to zero). We can confine 

ourselves to the space outside the conductor by prescribing 

(4) 
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proper boundary conditions to the field in air (the tangential 

components of the electrical vector should vanish at the sur- 

face). A similar situation arises if «J J tj| is very large. 

The field inside the body is in this case very small except 

in a thin surface layer (skin-effect), and the influence of 

this layer may be accounted for by stating boundary conditions 

for the external field. These are of the form 

Is J
x= -fr<Ex - nxV - V«' "A -et0-      (3) 

where (j , J , J ) is the surface current density vector, 
A  y  z 

(nv, n , n ) the unit vector of the normal to the surface, x  y  z 

E the normal component of the electric field, the meaning 

of the other symbols being evident. These conditions, first 

stated by Leontovicir in a somewhat different form, apply if 

TJ » 1 and if KR 11 T)| » 1 (K-2TT : X). The latter in- 

equality signifies that the thickness of the skin layer should 

be small as compared with the radius of curvature of the 

obstacle. Conditions (3) may be easily generalized for 

arbitrary values of the magnetic permeability m. 

Consequently the smallness of 1:J |TJ| permits us to 

confine our attention to the field outside and on the body, 

which constitutes an important simplification of the problem. 

We now proceed to examine the influence of the smallness 

of the wave-length. 

(5) 
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As well known, in the limiting case of small wave-lengths 

the laws of geometrical optics become valid. Particularly, the 

boundary of the shadow on the surface of the body becomes sharp 

and well defined. On the one side of the boundary— in the 

illuminated region— the field obeys very nearly Frensnel's 

laws of reflection, and on the dark side the field rapidly 

decreases to zero. 

The approximation given by the geometrical optics is, 

however, not sufficient for our purposes. The point of interest 

for us is the diffraction phenomenon in its strict sense, i.e., 

the bending of the ray around the obstacle. This phenomenon 

cannot be treated by the means of geometrical optics, and to 

give a theory of this phenomenon a more accurate solution of 

the field equations is required. 

The author succeeded in finding this solution by means of 

a new principle which may be called "The Principle of the Local 

Field in the Penumbra Region". 

This principle consists in the following: - The transition 

from light to shadow on the surface of the body takes place in 

a narrow strip along the boundary of the geometrical shadow. 

The width of this strip is of the order 

3 
d - R 2 

7T no     > (4) 

where RQ is the radius of curvature of the normal section of 

the body by the plane of incidence. »It-may be proved that, 

(6) 



with neglect of small quantities of the order 
"V *Ro ' 

the 

field in this strip has a loca], character: it depends only 

on the value of the field of the incident wave in the neighbor- 

hood of the point considered, on the geometrical shape of the 

body near the point and on the electrical properties of the 

material of the body. The field near a given point on the 

strip does not depend en its values at distant points and can 

be calculated separately. 

To establish the principle of the local field and to derive 

explicit formulas for this field we have used two different 

methods. 

One of these (2) applies to the case of an absolute con- 

ductor ana gives the values of the field on its surface. We 

start with the integral equation for the surface current density 

J. This is of the form 

j=2jex + y nx £j'*o ll •f? 
dS1 

80)1 f 

iKR 

(5) 

(6) 

where 

f =• (1 - iKR)e 

The vector j  (external current density) is defined by the 
OTT 

expression (3), where H is replaced by H" , the magnetic 

vector of the external fieldj z is the radius vector of the 

point of observation, z' that of the point of integration; 

R= I z - z1 is the length of the chord between z and z"; 

** 

(7) 



■FIT 
8 

n Is the value of the unit vector of the normal at z. A qualita- 

tive study of the integral equation permits us to establish the 

principle of the local field. This principle once established, 

we have to find a solution of the diffraction problem for- a con- 

vex body of a particular shape and to derive approximate formulas 

for the field on its surface. In virtue of the principle of the 

local field, these formulas hold for any other convex body having 

at the point considered the same values of the principal radii of 

curvature.  (The particular body must of course be sufficiently 

general to possess points with any prescribed values of principal 

radii of curvature; actually a paraboloid of revolution has been 

used). Proceeding in this way we arrive at a general formula 

for the surface values of the tangential components of the 

magnetic field or, which amounts to the same, for the surface 

current density vector. This formula is of the form 

J- JeX 0(e, 0) (7) 

where the argument e in G denotes the quantity 

«- I 7T  O (8) 

i being the distance from the boundary of the geometrical shadow, 

measured along the ray (i.e., along the line of intersection of 

the plane of incidence with the surface of the body) and taken 

positive in the direction of the shadow and negative in the 

opposite direction. The function G(c, 0) is defined by the integral ' 

(*) 



0(6, 0) = 

where C is a contour in the complex t-plane running from 

infinity to zero along the line arc t • $r   and from zero 
to infinity along the positive Peal axis. 

The function u)(t) may be called the complex Airy's ' 

function',  it is defined by the differential equation 

*♦ 

ü>"(t) m.  tüj(t) (10) 

and by the asymptotic behavior for large negative values 

of t 

u>(t) ** (-tr1^exp[ij(^](  (11) 

The function G(€,0) tends to the limit G - 2 for large 

negative values of e, while its modulus decreases exponentially 

for large positive values of €. Formula (7) reproduces thus 

the gradual decrease of the field amplitude when passing from 

light to shadow. 
h. 

The same results may be obtained by another method 

which allows ua to generalize them in two respectB. Firstly, 

the body need not be a perfect conductor, but may have a 

finite conductivity, if only the boundary conditions (5) are 

applicable. Secondly, the field is obtained not only on the 

surface of the body, but also near the surface '(at distances 

that are small as compared with the radii of curvature). The 

method consists in simplifying Maxwell's'equations and boundary 

(9) 
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conditions by neglecting quantities of fh« « „ a 4 ontities of the order of the square 
of the .»all parameters 1-J]7[ and x , ._ ^ wave ^^ 

for the amputee Is thereby replace, by a parabolic equatlon 

of Schroainger-s type. The elnpllfled equaW(jns ^ ^ ^ 

a limited region near a point on the penumbra strip 

The solution of these equatlons may be perfo»ea by means 

of the separation or variables ana yleias the fleia In the region 

oonsiaerea ana especially In the penumbra strip on the boay 

Introducing the complex quantity 

_im 
SV 

i_ 
ft • 

TTR 

- -^ .  -^ X (12) 
(the modulus I,/ ls thua the quotlent Qf ^ ^ ^ ^ 

meters), we may write instead of (7) 

J-rXQ(€, q) , 

where 
(13) 

0(6, q)-e4 1 
(U) 

f     elet dt 
• i»(t) - qco(t) ' 

the contour C being the same as in (9). These formulas give 

thus the distribution of currents on the penumbra strip on the * 

body and generalize our previous formulas (7) and (9/. The 

formulas for the field near the surface are more complicated 
and will not be written here. 

It is to be noted that in the outward portion of the strip, 

where the illuminated region begins, approximate expressions can 

be derived from our formulas that coincide with expressions for 

(10) 



the field obtained by superposing the incident and the reflected 

wave and using Fresnel's coefficients of reflection. On the 

other hand, in the opposite portion of the strip the field is 

practically zero. Thus our formulas constitute the missing 

link joining the two regions where the laws of geometrical 

optics may be applied. Together with Fresnel's formulas they 

allow us to compute the field near and on the whole surface of 

the diffracting body. 

In some problems this is all that is required. In the 

problem of propagation of waves around the earth's surface, 

for instance, we are only concerned with the field on heights 

not exceeding ten kilometers--a quantity that is small as com- 

pared with the earth's radius (6380km.). In this instance 

our formulas, if modified so as to include the case when the 

source is near or on the surface, give the required solution. 

In other problems, however, the field at large distances 

from the scattering body is needed. In spite of the fact that 

our formulas are valid only in the region near the surface, 

they provide a means to calculate the field at large distances 

also. Indeed, the field of the scattered wave is generated 

by the currents induced on the surface (in the skin-layer) 

by the incident wave. These currents are given by our formulas. 

Thus, by applying well-known theorems on the vector potential 

due to a given current distribution, we may, in principle, 

calculate the field for arbitrary distances from the reflect- 

ing body. 

(11) 

Jstk 



y/ 

12 

The principle of the local field in *h. 
neia in the penumbra region 

provides thus a baqia *•«*, 4-v 
basis for the approximate solution of the probl* 

l. 

2. 

3. 

4. 
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TT THE DISTRIBUTION OF CURRENTS INDUCED BY A PLANE WAVE 
* ON THE SURFACE OF A CONDUCTOR 

V. Fock 

The distribution of currents, induced on the 
surface of an perfectly conducting body by an incident 
plane wave is considered. The body is supposed to be 
convex and to have a continuously varying curvature. 
The wave length X of the incident wave is supposed to 
be small as compared with the dimensions of the body 
and with the radii of curvature of its surface. It 
is shown-that the current distribution in the vicinity 
of the geometrical shadow is expressible in terms of 
an universal function G(£) (the same for all bodies), 
depending on the argument £Äi/d, where I  is the 
distance from the boundary of the geometrical shadow, 
measured in the plane of incidence, and d is the width 

of the penumbra region Vd»  — R  R is the radius of 
\   ""\| 7T   O'      0 

curvature of the normal section of the body by the plane 

of incidenceJ . For the function G(£) an analytical 

expression is derived and tables are computed. 

Let us consider a perfectly conducting body on the surface 

of which a plane electromagnetic wave is incident. The surface 

of the conductor is supposed to be convex, with a continuously 

varying curvature. The incident wave induces on the conductor 

electrical currents, which in their turn become a source of the 

scattered wave. If the current distribution on the conductor 

is determined, then the calculation of the field of the scat- 

tered wave may be performed by applying the well-known formulas 

for the vector-potential. Hence the essential step in solving 

the problem of diffraction of a plane wave by a perfect con- 

ductor is to find the currents induced on its surface. 

(1) 
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The present paper is a preliminary report on our work 

concerning the approximate solution of this problem, 

1. Let us denote by J the surface current density on the 

conductor. The vector J is defined for every point on the sur- 

face and is directed along the tangent to the surface. It is 

completely determined by its two tangential components, the 

third component (normal to the surface) being equal to zero. 

It may be shown that the vector J satisfies the follow- 

ing integral equation: 

J- 2J 
ex 

with 

f - (1 - ikR)elkR , 

surf 
dS«  (1.01) 

(1.02) 

In this equation R is the length of the chord joining the two 

points of the surface: the fixed point r(x,yfz), for which the 

integral is evaluated, and the variable point r'fx'j'jZ1), 

whose coordinates are functions of the integration variables. 

n is a unit vector of the normal to the surface at the point 

r,  dS' is the surface element at r» and k is the absolute value 
of the wave vector. 

.ex The quantity J 

by the formula 

is an "external" current density defined 

.ex c 
TPrF [n*H

ex j , (1.03) 

where Hex is the value of the magnetic field of the incident 

wave on the surface ("external" field). 

If the dependence of the external field upon the coordinates 

is given by the factor 

(2) 
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e ik(ax+ßy+7z) (1.04) 

then the current density may b,e sought in the form of a product 

0f a similar factor with a slowly varying function of coordina- 

tes. The integral (1.01) after dividing by (1.04) takes the 

form 

I» ?ik [R+a(x'-x)+ß(y'-y)+7(z»-z)J 0dS' (1.05) 

where 0 is a slowly varying function. If the wave length is 

sufficiently small as compared with the dimensions of the 

body, the value of the integral will be approximately 

I = 
27Ti 

!<  cos 0 
* , (1.06) 

where the point x1 y1 z' is connected with the point x y z as 

it is shown in Pigs. 1 and 2, and 0 is the angle of incidence 

of the ray. 

*>w 

Fig. 2 

*. 

The analytical connection between the points x' y1 z1 

and x y z is given by the following formulas. Let n1 denote 

the unit vector of the normal at the point x' y' z* and let 

L. 
(3) 
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where 

a + 2n' cos e »a» , 

ß + 2n' cos Ö«ß«   , 

7 + 2n« cos 
Z 

easy   , 
(1.07) 

cos 0» . (oni + ßn. +>n, ) .       (1>08) 

The quantities o' ft», v« aw th. *<„ t. 

reflected at the poi^ x, ^V  
dlr6Ctl°n C°8lne8 of *• «* 

With these notations, we have either: 

x - x1 

=■ a 
- V» 

= ß i z - z« 
= 7 (1.09) 

or 

X - X' 
= a1 3L= 71 = ß' ; z - z 

= 7» (1.10) 

the formulas (1.09) being valid, if the point x' y' z'  is 

situated on the illuminated part of the surface (Fig. 1), 

while (1.10) are valid, if this point is situated on the 

shadow part of the surface. In the latter case the "reflected" 
ray is fictitious. 

With the same degree of approximation as in formula (1.06) 
the integral equation (1,01) allows the following solution: 

ex 1 
Ü = 2J   on the illuminated part, L 
J= 0 on the shadow part.       I 

Near the boundary of the geometrical shadow (where cos e MO), 
formula (1.06) ceases to be valid and expression (1.11) does 
not give a gradual transition from light to shadow. 

CO 

(1.11) 



2. In order to obtain for the currents an expression 

valid in the transition region also, it is nectssary to use a 

more exact solution. It is rather difficult to derive it 

directly from the integral equation, but we have succeeded 

to obtain it in an indirect way, on the basis of the follow- 

ing considerations. 

First of all, it is seen from Figs. 1 and 2 that if the 

point x y z lies near the geometrical boundary of the shadow, 

the point x' y' z* lies also near this boundary and near the 

point x y z. Therefore, the value of the integral (1.01) is 

determined by the values of the integrand in the neighborhood 

of the point for which the integral is evaluated. Thus, in 

the region of the penumbra (near the geometrical boundary of 

the shadow) the field has a local character. Secondly, the 

investigation of the integral equation (carried out under the 

assumption that the chord can be replaced by its projection 

on the tangent plane) shows that the width of the penumbra 

region is of the order of 

d = X 
IT 

(2.01) 

where R is the radius of curvature of the section of the body 

surface by the plane of incidence. But in a region of width 

d and in a certain more extended region the nucleus of the 

integral equation depends essentially only on the curvature 

of the surface in the neighborhood of a given point (i.e. on 

the second but not on the higher derivatives of the surface 

equation with respect to coordinates). 

Hence it follows, that all bodies with a smoothly vary- 

ing curvature have the same current distribution in the penumbra 

region, if only the curvatures and the Incident wave are the 

same near the point under consideration. 

(5) 
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The results stated permit us to infer that, if we solve 

the problem for any particular case, we can obtain universal   I 

formulas for the field on the surface of a perfect conductor. 

These formulas immediately apply to the region of the penumbra,  I 
I 

but the field may be considered as known everywhere on the sur- 

face, since for the illuminated region and for the remote shaded I 

region the expressions (1.11) are valid. 

jj. The derivation of these universal formulas is too 

complicated to be given in any detailed form in a short paper. 

We confine ourselves to some Indications as to the method, and 

to the statement of the result, which may be done in quite a 

simple way. 

The considerations developed above show, that for the 

derivation of the general formulas we can start from an exact 

solution of the problem of diffraction of a plane wave by 

some convex body with a smoothly varying curvature. The sur- 

face of the body must, of course, be sufficiently general, i.e. 

must possess points with given values of the principal radii 

of curvature. 

There are two cases in which exact solutions of the problem 

are known, namely, the case of a sphere and the case of a circu- 

lar cylinder (in the last case the incidence of the wave is 

supposed to be ncrrr&l).    These bodies are, however, not sufficiently 
general: for a sphere the two radii of curvature are equal, and 

for a cylinder one of the radii is infinite. The simplest of 

the bodies having arbitrary values of the curvature radii are: 

the ellipsoid and the paraboloid of revolution. For these bodies 

only the general form of the solution of the scalar wave equation 

is known; the complete solution of Maxwell's equation for the 

given physical problem appears to be unknow. 

In our work we have obtained the required solution for the 

paraboloid of revolution (particularly the values of the tangential 

(6) 



components of the magnetic field on its surface) and have used 

this solution to derive the approximate formulas. 

Let the equation of the paraboloid have the form 

2   2        2 x + y - 2az - a « 0 . 

The components of the field of the incident wave are 

E = E cos 5 e 

Ey=0, 

in HX = O, 

H =E eln , y   o   ' 

iß Ez= " E0 sin 6 e " ; Hz = 0 , 

(3.02) 

where 

Q  = k (x sin 6 + z cos 6) . (5.03) 

Pig. 5 

L 

If the parabolic coordinates: 

u * k (r + z) j 

u * k (r - z) ; 

0 » arc tg & 

(7) 

(3.04) 
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with 

|v2  „2   2 -Jx + y + z , (3.05) 

are Introduced, the equation of the paraboloid becomes 

u s \)Q m ka . (35.06) 

For the generalized (covariant) tangential components of 

the external magnetic field we have the expressions: 

2iu H®x + H^x u    0 

- 2iu H*x + H®x 
u    <p 

_0 

k 
J"u7 elß + ** 

i uo e m - 10 

(3.07) 

(3.08) 

In the new coordinates the expression for Q  hus the form 

Q  = 2 (u - «0 cos 6 + 4 uu sin ö c°s 0 .  (3.09) 

For the same components of the total field expressions In form 

of Fourier series with respect to the angle 0 are obtained. 

The coefficients of sin s0 and cos s0 in these series are 

definite Integrals with respect to the parameter t, involving 

some complicated functions of u, x>,  6,  s, t. These series 

and Integrals can be transformed into double Integrals of 

the form 

En   Ju\T 
2iu H, + H. s —  u   0 

27T k sin ö 

-is0+it lgtg I 
g(s,t) e ds dt , 

(3.10) 

where the function g(s,t) is defined In the following way. Let 

£ (\>,s,t) be an integral of the differential equation 

(8) 

k. 



do*  do  \4 ' 4o  2y 

having at o-*ooan asymptotic expression 

C(o,s,t) ■ e 
«■  1 i  it  4 o 7T   -£ + -5-   i -5 

15    *  e d    P 20 
(* 

(3.11) 

- s - it 

1 + S - it 

■-0 
(3.12) 

where F20 is an asymptotic series of the form 

P20 i 6 ,3,l) . ! + S6 1 + a(a+l{p(p+l) 1_ + _   „,„, 

We put 

i ^t-1 I s (g9 r(^) 
2.,.2v „2 C  (o,S,-t-i) + t (B>r) C  (o,S,-t+i) 

(3.14) 

where o is considered to be the quantity  (3.06). 

Then 

is 7T 

g(s,t)-e      2    C  (u,s+l,t)  C  (o,s-l,t)   (s-it)  N  (s,t)   .   (3.15) 

With g(s,t) having this value, the expression (3-10) 

is valid, if -7T/2 < 0 < 7T/2. In the cases ir/2 < <t>  < 

37T/2 and -3IT/2 < 0 < -w/2 we have to take for g(s,t) a 

somewhat different expression, which we shall not 

(9) 
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write down here. The integration in (3.10) with respect to the 
variable t 1B to be made along the real axis from - 00 to + 00 
and with respect to s aTong the imaginary axis from - i ©to 
+ 1 oo, The value of -2iu H. + H, is obtained from (3.10), if 
we replace 0 by -0. 

The double integral can be evaluated approximately under 
the assumption, that the value of u»ka is very large. Let us 
introduce the quantity 

J uo sin 6 cos 4> - t> cos 6 
4 = 

[2t> (u-f*)] vft  (sin ö)2/3 
(3.16) 

It is easy to verify that on the geometrical boundary of the 
shadow £ *0; but in general g will be large, of the order of 

t> '*,    Therefore, when evaluating the integrals we shall con- 
sider 0 to be very large and £ to be arbitrary (in general, 
finite). It can be shown, that under these assumptions the 
following approximate expressions for the integrals are valid 

with a relative error of the order of o"1^; 

2iu Hu +H«i^ elfl + *♦ 0(|) ,    (3.17) 

E. 
- 2iu Hu + H0» ~2 J^ e

lfl " ** 0(€) ,    (3.18) 

where 

0(5) - e 
JV" J   w' (T 

dr 

(T) 
(3.19) 

the symbol 1^ denoting a contour running from infinity to the 

origin along the ray arc 2 - 2/3 w and from the origin to infinity 
along the ray arc z»0 (the positive real axis). 

(10) 
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The function W(T) whose derivative is involved in the 

integrand has'been studied in our previous paper* . W(T) 

eatisfies the differential equation 

W" (T)m   TW (T) , 

and can be written in the form of an integral 

,2 
W(T) = dz , (3.21) 

where the contour denoted by T   runs from infinity to the 

origin along the arc zs - 2/3 7r and from the origin to 

infinity along the positive real axis. 

Comparison of (3.17) and (3.18) with (3.07) and (3.08) 

gives 

.ex 
tg Htg *KZ G (0 (3.22) 

Thus the tangential components of the total magnetic field 

are equal to the tangential components of the external field 

multiplied by a certain complex function of a single variable £. 

A similar relation exists between the total and the "external" 

current density, namely 

1 m J6X G (O (3.23) 

Let us examine the geometrical meaning of the variable %  in 

more detail. Consider the section of the paraboloid surface 

by the plane of incidence passing through the given point 

#(Flg. 4). We denote by J the distance of the given point from 

#Journ. of Phys., £:255, 19*5. 

(11) 
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Pig. 4 

the geometrical boundary of the shadow, considered positive in 

the direction of the shadow and negative in the direction of the 

light. The distance I  Is measured in the plane of incidence. 
Let R be the radius of curvature of the surface section and o 

k ä 27r/x the absolute value of the wave vector. 

Then the quantity 

e* k 

2R 
1 -  d (3.24) 

[where d is the width (2.01) of the penumbra region] is easily 

seen to coincide with the quantity (3.16) defined for a paraboioid 

of revolution. Since we know beforehand that formulas (3.22) and 

hfdf  a!lqUlte genera1' we «"»I.*« that they are valid for all 
bodies with a given curvature, if * l8 glven by (3.24) 

L (12) 
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These formulas give the transition from the shadow to the 

light. 

For large positive values of ft the function G(ft) is approxi- 

mately equal to 

0(1) -•/G2**).-*. (3.25) 
*' 

where a, b, c are known numbers; namely 

a a 0.5094 ;  b s 0.8823 ;  c m  1.8325 . (3.26) 

Owing to the factor e" * the function G(ft) decreased rapidly. 

This corresponds to the decrease of the amplitude in the shadow 

region. 

For large negative values of ft the function G{ft) admits an 

asymptotic expansion of the form 

o(e) - 2 +-i* +. . 
2ft* 

(3.27) 

and tends to a limit which is equal to 2. This limiting value 

corresponds to formulas (1.11) for the illuminated region. The 

discontinuous function (1.11) is thus replaced in our more exact 

solution by the continuous function (3.23). This enables us to 

calculate the distribution of currents on the surface of a con- 

ducting body with sufficient accuracy. 

In the Appendix are given tables of the function G defined 

by (3.19) a"d of the function g related to G by the equation 

x3 i — 
G(x) « e 5 g(x) 

and expressible in form of the integral 

(3.28) 

L_ 
(13) 
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g(x) = 4T- 
elxt 

J   w« (t) 
dt (3.29) 

The function 0(x) is tabulated for values of x from x - 4.5 to 

x = l with interval 0.1, and the function g(x) is tabulated for a 

range of values of x from x* - 1 to xs4.5 with the same interval, 

For values of x less than x»- 4.5 expression (3.27) may be used, 

and for values of x greater than x«4.5 formula (3.25) becomes 
applicable. 

APPENDIX 

Table of the function G(x)= e >    g(x) 

X Re G Im G o| arc G 

-  4.5 1•?998 -0.0055 1.9998 9*30*' 
- 4.4 1.9997 -0.0059 1.9997 lO'lO" 
- 4.3 1.9997 -0.0063 1.9997 10'50" 
- 4.2 1.9996 -0.0067 1.9997 11'40" 
- 4.1 1.9996 -0.0073 1.9996 12'30" 
- 4.0 1.9995 -0.0078 1.9995 13'20" 
- 3.9 1.9994 -0.0084 1.9995 14'50" 
- 3.8 1.9994 -O.OO9O 1.9994 15'30" 
- 3.7 1.9992 -O.OO98 1.9993 16'50" 
- 3.6 1.9991 -0.0106 1.9991 18»10" 
- 3.5 1.9990 -.0.0115 .  1.9990 19'40" 
- 3.4 1.999 -0.012 1.999 21' 
- 3.3 1.999 -0.014 1.999 23' 

(14) 
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X Re G Im G IGI arc G 

- 5-2 1.998 -0.015 1.998 26' 

- J.i 1.998    ! -O.OI6 ' 1.998 28-       i 

- 5-0 1.998 -O.OI8 1.998 51* 

- 2.9 1.997 -0.020 1.997 54' 

. 2.8 1.996 -0.022 '   1.996 57' 

- 2.7 1.996 -0.024 1.996 41» 

- 2.6 1.995 -O.O26 1.995 46' 

- 2.5 1.995 -0.029 1.994 51' 
- 2.4 1.992 -O.O53 1.992 56'      | 

- 2.5 1.990 -O.O36 1.990 -    l°03' 
-  2.2 1.988 -0.040 1.988 -     1°10' 

-  2.1 1.985 -0.045 1.985 -    1018« 

-  2.0 l„98l -0.050 1.982 -    1°27' 

-  1.9 1.977 -O.O56 1.977 -    l°37' 
-  1.8 1.971 -O.O62 1.972 -    1°47' 

- 1.7 1.965 -0.068 I.966 -    1°58' 

- 1.6 1.956 -0.075 1.958 -    2°11' 

- 1.5 1.946 -O.O82 1.948 -    2°25' 
- 1.4 1.955 -O.O9O 1.956 -    2°40' 

- 1.5 1.919 -O.O98 1.921 -    2°55' 
-  1.2 1.901 -0.105 1.904 -    3°10' 

-  1.1 1.880 -0.II3 1.884 -    3°27' 
-  1.0 1.857 -0.II9 1.861 -    3°40« 

-  0.9 I.829 -0.125 1.833 -    3°51' 
-  0.8 1.798 -O.I26 1.802 -    4°00' 

-  0.7 1.762 -O.I26 1.766 -    4°05' 
- 0.6 1.722 -0.122 1.726 -    4O05' 

- 0.5 1.678 -0.115 I.682 -    5°54« 
-  0.4 I.650 -O.IO5 1.635 -    5°36' 

-  -.5 1.578 -O.O86 1.580 -    3°06' 

0.2 1.522 -O.O65 1.525 -    2°22' 
-  0.1 1.462 -O.O54 1.465 -    1°21' 

*.' 

(15) 
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X Re g Im g 1*1 arc g 

o.i 1.333 0.040 1.334 1°43» 

0.2 1.263 0.083 1.266 3° 45' 

0.5 1.190 0.127 1.197 6°04' 

0.4 1.115 O.I69 1.128 8°37' 

0.5 I.038 0.209 • 1.059 11°21* 

0.6 O.961 0.244 0.991 14°14' 

0.7 0.883 0.274 0.9P4 17°14' 

0.8 0.806 0.299 0.660 20°i9' 

0.9 0.732 0.317 0.798 23°27' 

1.0 0.660 0.331 0.738 26°38» 

1.1 0.591 0.339 0.682 29°50' 

1.2 0.527 0.343 0.628 33°02» 

1.3 0.467 0.342 0.578 36°13' 

1.4 0,411 0.338 0.532 39°25' 

1.5 O.360 0.330 0.488 42°34' 

1.6 0.313 0.320 0.448 45°42' 

1.7 0.270 0.309 0.410 48°48' 

1.8 0.232 2.960 0.376 51°53' 

1.9 0.197 0.281 0.343 54°56' 

2.0 0.167 0.267 0.315 57°59' 

2.1 0.140 0.252 0.289 6l°00' 

2.2 0.116 0.237 0.264 64°00' 

2.3 0.095 0.222 0.242 66°58« 

2.4 0.076 0.208 0.£21 ..• 69°56' 

2.5 0.0596 0.1936 0.2025 72°5V 

1  2.6 0.0453 0.1797 0.1853 75°51' 

2.7 0.0330 0.1664 0,1696 78°47' 

2.8 0.0224 0.1536 0.1552 8l°43' 

2.9 0.0133 , 0.1414 0.1421 84°39' 

3.0 - C.OO55 0.1299 0.1300 87 V 
3.1 - 0.0010 0.1190 O.II9O 90°30' 

3.2 - 0.0065 0.1088 O.IO89 
 .Mil- ■   

93°25' 
  

(17) 
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Re g 

- 0.0110 

- 0.0147 
- 0.0176 
- 0.0199 

- 0.0216 

- 0.0229 

- 0.0237 
- 0.0242 
- 0.0244 
- 0.0243 

- 0.0240 

- 0.0235 
- 0.0228 

Im g 

0.0991 
0.0901 

0.0817 

0.0739 
0.0666 

O.0599 

0.0537 
0.0480 

0.0428 

0.0380 

0.0336 

0.0296 

0.0260 

g 

O.O997 

O.O913 

0.0836 

0.0765 

0.0700 

0.0641 

0.0587 

0.0537 
0.0492 

0.0451 
0.0413 

0.0378 

0.0346 

arc g 

96°20» 

99°15' 
102°10»' 

105°05' 

108°00< 
110°55' 

113°50' 

116°45' 

119°40» 

122°35> 

125°30« 

128°25' 

131°20- 

(18) 
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III. DIFFRACTION OF RADIO WAVES'AROUND THE EARTH'S SURFACE 

V. Fock 

The problem of the propagation of radio waves 
around the homogeneous surface of the earth is inves- 
tigated. The diffraction effects are considered but 
the influence of the ionosphere is neglected. The aim 
of the paper is to derive formulas for the wave ampli- 
tude as a function of the elevation of the source, its 
distance from the point of observation (situated on 
the surface of the earth), of the wave length and of 
electrical properties of the soil. The main result is 
the derivation of an expression for the attenuation 
factor in form of an integral. This expression is 
valid for all the values of parameters which are of 
practical interest. In the limiting cases the well- 
known formulas are obtained: the Weyl—van der Pol 
formula for illuminated region and the formula which 
corresponds to the first term in Watson's series for 
the shaded region (the latter in a slightly corrected 
form). Essentially new is the investigation of the 
region of the penumbra (near the line of horizon). 
Formulas are obtained which give a continuous transi- 
tion from the illuminated region to the shaded one. 
Methods for numerical calculations of sums and inte- 
grals involved in the problem are elaborated. 

INTRODUCTIONm 

There are many papers devoted to the problem of the dif- 

fraction of radio waves around the surface of the earth. A 

review of more recent investigations may be found in a paper 

by B. Vvedensky. 

The interest in this problem is justified by the fact, 

that at small distances, of the order of a few hundreds of 

A short,account of the results of this paper is given 
in our note. 

i- 
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kilometres, the refraction of radio waves In the ionized layers 

of the atmosphere may be neglected and the decisive role in the 

propagation of radio waves is played oy the diffraction. 

In spite of the fact that a rigorous solution of the pro- 

blem of diffraction by the sphere had been already obtained 

some decades earlier, no practically suitable approximate solu- 

tion has been proposed up to now. In .this paper we intend to 
fill up this gap. 

1. STATEMENT OF THE PROBLEM AND ITS SOLUTION 
IN THE FORM OF SERIES 

We denote by r, 0, 0 spherical coordinates with origin 
at the center of the earth globe. 

The equation of the earth's surface (considered as smooth) 

is r -  a, where a is the radius of the earth. Let us suppose 

that a vertical electric dipole is located at the point r - b, 

6  = 0 (where b>a). Suppressing the time-dependent factor e 

in the field components, we can express these components by 

means of the Hertz function U which depends on r and 6  only. De- 

noting by k the absolute value of the wave vector we obtain for 
the field in the air: 

Er * r sin 0 55"(sin e  Dp * 

Ee = -Fo7 ('!£); (I-«) 

(2) 
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the other components being equal to zero. 

Similar equations hold for. the field In the earth. 

The function U satisfies for r > a the equation 

AU + k2U - 0, 

and the radiation condition at infinity 

(1.02) 

lim örU 
3r~ - ikr Ui * 0. (1.03) 

r-> oo 

If b > a, i. e. if the source (dipole) is located over 

the earth's surface and not on the surface itself, U must have 

a singularity at the point r • b, 0 = 0, such that 

ikR 
U = *-, + uf (1.04) 

and U* remains finite if kR ■*  0. In this formula 

= 1/^7 R = Vrfc + bfc - 2rb cos 0 (1.05) 

is the distance from the dipole. On the earth's surfaoe the 

Hertz function U has to satisfy the boundary conditions which 

ensure the continuity of the tangential components E« and H.. 

If we denote the Hertl function within the earth by Up 

these boundary conditions will have the form: 

k2U = k2 U2; £  (rU) = ^  (rU"2)  for r - a.    (1.06) 

For 0 4 r 4 a.  (within the earth) the function Up has to 

satisfy an equation similar to (1.02) and to remain finite. 

The quantity kp in formula (1.06) and in subsequent 

formulas is determined by the equation 

k2 = ek2 + i UM k 
c. C 

(3) 

(1.07) 

*.' 
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and by the condition Im(kg) > 0. It Is useful to introduce 

instead of the conductivity .of' the earth 6,  a length i which 

characterizes the specific resistance of'the earth. We put 

I a C/47TÖ. ■.'■;• (l.08) 
■      '     ■ ■   '     * ■ ■ • 

For sea water the values of t vary from 0.05 cm (very salty 

water) to 0.5 cm (Scarcely salty Water), ' For the soil thfs 

length is hundreds or" thousands times greater. Introducing 

the complex induotlve capacity of- the earth 

*> .". e + * IHt "  (L09) 

we have . 

*     * 

The solution of bur problem in the form of series is well 

known. We write,down the necessary formulas, without giving 

their derivation 

VJS») =Vf~HnH <*>' 
(1.11) 

where Jv(x) is the Bessel function and H^'fx) is the Hankel 

function of the first kind. These functions are: connected by 

the relation 

>n(x) q(x) - .*,»(*)'Cn(x) • i.\      (1.1$) 

We introduce a special notation for the logarithmic derivative 

of the function fn(x)i tf'(x) 

*n(x) 
(1.13) 

. <*) 

\ ^i^^i^.fiSXSSiSiixy-f'X^Mmsa^^at 



As seen from (1.01), the field on the earth's surface 

may *>e expressed by the quantities 

K  - 3F <*">, r ■ a 

For these quantities the following series in Legendre 

polynomials may be obtained: 

(1.14) 

00 

ua s  " kab I (2n + 1) C(kb) 
Pn(cos B),    (1.15) 

SS Cn(ka) " fc *n<k2a> <n(ka) 

oo 

Y~"  ,2n + 1) C (kb) Xn(k2a) 

E    V^CA(^a) - ^ Xn(V) ^(ka> " 
s e). (i.i6) 

Our task is to perform an approximate summation of these 

series. 

2. THE SUMMATION FORMULA 

The sums we have to calculate are of the form 

-) v0(v)Pv_i(cos e), (2.01) 

where the summation is taken over half integral values of v. 

In the sum (1.15) the function #(v)(disregarding a con- 

stant factor) is equal to 

0(v) - Wkb> 
Sv-±<ka> - h  Xv-|(

k2a) ^v4<ka) 
(2.02) 

In the sum (1.16) this function differs from (2.02) by the 

factor XvaS}f] • 
■ 

(5) 
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For the direct computation of the sum it would be necessary 

to take the number of the terras approximately equal to 2ka, i. e. 

to double the number of the waves which may be put around the 

earth circumference. Since this number is enormous, it is evi- 

dent, that such a direct summation is impossible. For the cal- 

culation of the sum S it is necessary to make use of the fact 

that #(v) is an analytical function and to transform this sum 

into an integral, which is to be evaluated by some approximate 
p 

method. Such a transformation was firstly proposed by Watson 

in 1918 and was then used by various authors. But all these 

authors aimed to bring the expression obtained by this trans- 

formation to the form of a sum of residues, while our aim is 

to separate out a main term which is easier to investigate and 

to estimate the magnitude of the remainder. The method of com- 

putation of the main term is not predetermined thereby. 

When performing our transformation we have to bear in 

mind the following general properties of the function 0(v). 

It is an analytical function of v meromorphic in the right 

hal**-plane. It has poles only in the first quadrant and is 

holomorphic in the fourth quadrant. It decreases at infinity 

in such a way that all the integrals considered converge. 

The Legendre functions that enter (2.01) can be expressed 

by means of the function 

°v * F(V ftff/ffl F (*' *' v + l' STET*)   <2*05> 

(6) 
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where F denotes the hypergeometrical function. Denoting by 

n* and by P* i the expressions which are obtained from G and 

from P i = P i(cos 0) by replacing 0 by T\  - 0 we get: 

v"?  TTV2 Siil 0 

iv0-i 71 I Ö* + e -iv0+i K] (2.04) 

It is seen from (2.05) that if the values of v lie out- 

side of a certain sector, which includes the negative real 

axis, and if | v sin 0 | is large, then the function G (and 

also G ) is approximately equal to 

■> y 7i/v. G (2.05) 

Substituting (2.05) In (2.04) we get the well known 

asymptotic expression for P i.  If we denote by B(v) the 

first term in formula (2.04): 

B(v) = lv0-i 71 

7i V2  sin 0 
¥ G 

6, 
(2.06) 

the following relation may be proved 

pv-i = e1^'^71 Py i + 21 cos V7T B(v).       (2.07) 

We shall use this relation later on. We note that B(v) 

is holomorphic in the right half-plane. 

Let us consider in the plane of the complex variable v 

three contours: 1) the loop C, which starts at infinity on the 

positive real axis, runs above the real axis, encircles the 

*>* 

(7) 
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origin counter-clockwise and returns to the starting point at 

infinity running below the real axis; 2) the broken line Cp, 

which contains the first quadrant and is described (in its 

horizontal part drawn slightly over the real axis) from the 

left to the right side; 3) the straight line C, which crosses 

the origin and is Inclined at a small angle to the Imaginary 

axis. This line is described from the top to the bottom and 

lies in the second and fourth quadrants. 

We can write the sum S in the form 

S * k J  v*(v) sec V7r Pv-£ dv' (2.08) 

since the integral on the right-hand side reduces to the sum 

of the residues in the points v = n + £. The function 0(v) 

being holomorphic in the fourth quadrant, we may replace the 

contour C, by the contours Cp and C, and write 

S = - yr      I     V0(v) Sec V7I P* 1 dv + 2 J v-2 

»; 

(2.09) 

+ ö [ v0(v) sec V7i Pj_i dv V-2 

"* 
y 

This transformation of the sum corresponds to the usual 

one; the integral along the contour C, is neglected because of 

the smallness of the odd part of 0(v) (an estimate of its magni- 

tude will be given below), and the Integral along C2 is reduced 

(8) 
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to the sum of residues. But we shall go a step further and 

divide the integral along Cp into two parts: the main term 

and the correction term. Inserting in the integral the ex- 

pression (2.07) for Pj i we shall have 

where 

S — S-j + ört ■+■ 5-*, 

si ■ v0(v) B(v) dv, 

(2.10) 

(2.11) 

*>» 

s - £ \ v0(v) sec V7T e 
J 

iV7I 
P i dv v-2 

(2.12) 

S, = i \ v0(v) sec vTt P*_i dv. (2.13) 

The integrand in S, has no poles on the real axis (and 

also in the fourth quadrant). Therefore, there is no difference, 

whether we evaluate the Integral S, along Cp or along C,  We 

have denoted by C any contour, which is equivalent to Cg or C-,. 

The representation of S as a sum of three integrals (2.10) 

is exact—there was made no neglection in our derivation. But 

the estimation of the magnitude of Sp and S, shows that these 

integrals are negligibly small as compared to S,. 

In fact, if we evaluate the integral Sp as a sum of resi- 

dues at the poles of 0(v) we shall see that its ratio to S-^ is 

of the order 

(9) 
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|e2ivi (*-«)| 
(2.14) 

where v, is the p0le of #(„ nearest to ^ ^  ^ 

***** pert „, Vl u  posltlve and for :arge vaiues ^ ^ 

MV})  « c(ka)1/^, 
(2.15) 

where c is a pure number of the order of unity (for the per- 

fect conductor c » 0.70). Since ka is very large,of the order 

of a million (for X ■ 40 m, ka - 10 ), it is clear, that the 

quantity (2.15) will be large (for instance, equal to 70) and 

the quantity (2.14) will be negligibly small.  (In our problem 

6  cannot reach the value 71 since in this case we have to take 

into account the influence of ionized layers of the atmosphere 

and our formulas cease to be valid.) 

The value of the integral S, is determined by the odd 

part of 0(v). But the odd part of this function will be of 
the order 

e2ik2a| . (2.16) 

Since the imaginary part of k2a is a positive and very large, 

the value of (2.16) will be inconceivably small. 

The following physical picture gives a notion of the 

smallness of the integrals S„ and S,. The integral S2 is the 

amplitude of a wave which travelled once or several times 

around the globe without refraction (by means of diffraction 

only). The integral S4 is the amplitude of a wave which 

(10) 
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traversed a path equal to the diameter of the globe with the 

»bsorption which takes place within the earth. It is clear 

that both the integrals are negligibly small as compared with 

the amplitude of the wave which reached the observer through 

the air by the nearest way. 

Therefore with the whole permissible accuracy (i.e. with 

an error which is negligibly small as compared with tb*> errors 

Involved in the position of our physical problem) the uum S 

defined by (2.01) may be put equal to the integral S1 alone. 

This integral may be written in the form 

.-i(wA) 
S, =   „_._... 
1  7r V2 sin 0 5 v+(v) elv0 G*dv, (2.1?) 

which follows from (2.11) when the expression (2.06) for B(v) 

is inserted. 

3. THE EVALUATION OP THE HERTZ FUNCTION 
FOR THE ILLUMINATED REGION 

If 0(v) is the function (2.02), then the relation between 

the sum S and the quantity U is 

U a klF S. (3.01) 

Therefore, our approximate expression for U may be 
3. 

written 

U_ = 
2e 

L-r— 

,,--  ^v0(v) elv0 a*dv. 
a  7i kab V2 sin 6    l x 

(3.02) 

(11) 

1^ 
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The position of the main part of the integration path in 

(^.02) depends on the point for which the integral is evaluated. 

In general the main part is in the vicinity of the point v = v , 
where 

- i.u   i,     ah sin 9 /, .-,» vo    c     I ~        (3.03) 
Va2 + b2 - 2ab cos 9 

The quantity h is the length of the perpendicular dropped 

from the earth's center on the ray (I. e.^on the straight line 

which connects the source and the point of observation). 

For the approximate evaluation of the Integral U_ it is 

necessary to obtain the asymptotic expressions for the func- 

tions G* and #(v) valid on the main part of the Integration 

path. Since v and v $  are large as compared with unity, we 
may put according to (2.05) 

Oj = VVv". (3.04) 

For the Hankel functions involved In 0(v) one may tenta- 
tively use the Debye expression 

where 
VT- (v2/p2) (3.05) 

« ■J 1 " \ dp. 
P (3.06) 

TheSe eXPreSS10nS «" ~" P*"««. the eonaltlon 

IP
2
 - v2| » pV3 

(IS) 

(3.07) 



*3 

satisfied« As to the function Xy..!^*) its value near 

the point v = v may be represented with a sufficient approxi- 

mation by the expression    ' 

.-iVrrifr 
*v4 (k2a) (3.03) 

*• 

In order to make clear, in which cases the inequality 

(5.07) is satisfied, let us introduce the parameter 

i P m\?rJ    cos y' (3.09) 

where 7 is the angle between the vertical direction at the 

observation point and the direction from this point to the 

source. 

It is easily seen that for v = v , p « ka the inequality 

(3.07) is equivalent to the condition that p should be large 

and positive. Such values of p correspond to the illuminated 

region. The values of p of the order of. unity (positive and 

negative ones) correspond to the region of penumbra: the 

special value p = 0 gives the boundary of the geometrical 

shadow (horizon line). Large and negative values of p corres- 

pond to the shadow region. 

In this section we shall investigate the case of a large 

positive p (illuminated region); other cases will be investiga- 

ted in the next sections. 

We have seen thai, if p »1 the Debye expressions for the 

Hankel functions are valid. Inserting these expressions into 

(13) 
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(3.08) and uslng „.„, ^ (} ^ ^ ^ 

where 

Ü) a 

(3.10) 

(3.11) 

(3.12) 

If fche condition 

Wi cos 7 » i 

1» satisfied, where h - b . , ls th fc 
t''12) 

«- earth, the lntegral ,, , .  "* "^t " «» — above 

the „ethod of the ste  V ^^  >y TCans " -—;:0;;:;r d— - -——- 
ikR 

In this formula 

a  T? W. 

(3.13) 

■ V?"+ h
2  n          D - 2ab cos 6 

is the distance from m (3*14) ance from the source, and w is the -W 
unction« which in our case i. attenuation ur case is equal to 

2  

(3.15) *  ,2 - j-gr sin* 7 . 8ec 7 
"2 

(14) 

Ü 
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The quantity U' defined by the series (1.16) differs 

(in our approximation) from U by a constant factor only. 

We have ' 

j^sin 7Ua. (3.16) 

The last formula is true not only for the illuminated 

region, but also in other cases. 

If condition (3.12) is not satisfied, the denominator 

in the integrand (3«10) cannot be considered as slowly vary- 

ing. If instead of (3.12) we suppose that the conditions: 

,2 
1 « K  « (ka)2/5, (3.17) 

1 « kR « a/h, (3.18) 

are satisfied (the inequality p » 1, being a consequence of 

these conditions), the integral (3.10) can be approximately 

calculated by introducing a new integration variable u., 

according to 

r    2~~ 
(3.19) u- 2 2 

For the function W in (3.13) the following approximate 

expression is obtained: 

...-^/Mf/*''* *ö>' M- dpi 

M. + (kAg) ' 
(3.20) 

(15) 

m 
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where 

H0 = h/R 0.21) 

is the inclination of the ray to the horizon. The contour r 

is a straight line which crosses the point u. ■ p. passing there 

from the fourth to the second quadrant of the plane of u. (or of 

u. - u to be more exact). The integral (3.20) can be calculated 

without any further approximation and gives the well-known 

Weyl—van der Pol formula. 

If we put 

e  k0 V 2 '  T  e  FT*V 2^ ' (3.22) 

we shall have 

2 Ö£T .2 
W 2 - 4öe"^+T^  f ea da. 

iOD 

(3.23) 

To obtain the field components from our expressions for 

U and U' we have to differentiate these expressions by 9  which 

is easily done, since we may regard all factors in (3.13) ex- 
ikR cept e  , as constants. 

H.     ASYMPTOTIC EXPRESSIONS FOR THE HANKEL FUNCTIONS 

In the following we have to consider the case when the 

point of observation is in the region of penumbra. 

This case is characterized by the values of the parameter 

p (positives or negatives) of the order unity. As the inequality 

(16) 
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/* Ol)  is not  satisfied in this case,  the r^ebye expressions 

/■* o5) f°r the Hankel   functions are not valid on the main part 

of the integration contour and must be replaced by some others, 

The new expressions  for the Hankel functions suitable for our 

purpose can be obtained from the asymptotic expressions which 

are given in our previous paper-',  or from the formulas given 
h 

in the well-known Watson's treatise  , but it is more simple to 

deduce them independently. 

Our aim is to find an approximate expression for the 

Hankel function in terms of the function w(t), defined by 

the integral 

„(t). 4= I .*-v*> d2, (*.01) 

*' 

the contour  T running   from infinity to the origin along the 

ray arc  z  ■   - 2-n/j» and  from the origin to infinity along the 

ray arc z  =  0  (the positive real axis).    The function w(t) 

satisfies the differential equation 

w"(t)  =  tw(t) (4.02) 

with the  initial conditions: 

,1(71/6)   _ 2.0899290710 + 10.6292708425, w(o, ■ -^ 
T" r (2/3) 

w,(0) - . .\^  e-i(7i/6) , 0.7945704238 - iO.4587454481. 
3V3 r (ll/5) 

(4.03) 

(17) 
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w(t) is an integral transcendental function, which can be ex- 

panded into a power series of the form: 

f    t3     t6        t9        ) 
w(t) = w(0)|l +g7? + (2.5)(3,6) + (2.5.8)06.9)+ •••J + 

r   t*    t7      tio       7 
+ w'(0)|t + 3^- + (?.6)(4.7) + (3.6.9)(J».7.10) + ••"/ ' 

(4.04) 

If we separate in w(t) the real and the imaginary parts 

(for re^l values of t) putting 

w(t) = u(t) + iv(t), (4.05) 

then u(t) and v(t) will'be two iiidependant integrals of equa- 

tion (4.02) connected by the relation 

u'(t) v(t) - u(t) v'(t) - 1. (4.06) 

The asymptotic expressions of these functions for large 

negative values of t are obtained by separation of the real 

and imaginary parts in the formulas: 

, 7T 

w(t) - .* <-t)-V* fi^'\ 

,7T 

W(t) = e ^ (-t)1/* eV fc) 

(4.07) 

(4.08) 

For large positive values of t the asymptotic expressions 

for u(t), v(t) and their derivatives are of the form 

u (t) = t'1/4 e5        ;      u»(t) = t1/k  e5   ;   (4.09) 

.. JT-'J-'s» 

(18) 

*mm**w<% mmmmmmmmtmsmmmm^^'****** w!i*\9m*r**e*ä& 
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2 ,,3/2 
v(t)  = 4t-V* e" 3 

2 4.3/2 

v.m a - It1/*'.* 5 Mt' 211        6 • (4.10) 

Prom the series   (4.04)  the following relations are easily    *' 

deduced: 
; 7T        .71 
-•—       J-TT 

(4.11) 
*T        J-7T 

w(te ') « 2e D v(-t), 

27T a 
w(te 5 ) « e 3 [u(t) - iv(t) ] . (4.12) 

These relations describe the behavior, of w(t) in the complex 

t-plane. 

We note that w(t) is expressible in terms of the Hankel 

function of the order 1/3 according to the formula 

w(t) -41^  <-t>1/2 H0»(| (-t)J/£).       (4.13) 

After having enumerated vhe main properties of w(t), we 

now proceed to deduce the asymptotic expression for the Hankel 

function IT '(p) where v and p are large and nearly equal, so 

that the ratio 

-fi- = t 
</p/2~ 

remains bounded, while p tends to infinity. 

(4.14) 

The Hankel function H^ '(p) admits the integral represen- 

tation 

(19) 
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H (1) (p) * = ^j' 
-p sh v + v 

dv. 
(t-15) 

where the contour C consists of a part fl, ,„ „ 
Imfv) - S stral8ht line 
•"»(v) - - „ described from - „l  m f. 
= / >    , to some Point v : v with 
"•<*«>> < 0 e. g. v , (. vVT) _ Vo ""» 

ing v to the  , , J' S  ralght llne J01"- «« v0 to the origin and, finally, the 

'" US eXPre3S v th™<* t, according to (4 14) and 
introduce a new Integration varlahle 

(4.16) 

pand rrrg * and z as finne and > - *—. - - - 
on  

6 lnUrgrand - '*■«) - a »cries of negative (frac- 
tional) powers of o  q1n,a «.*. 

p. Since the relevant part of fha - 
for,ed contour c c 

Part of the trans- 
mcides with contour r we can write 

"'■""'-^r $■-»*'{>-Kir,*,.,.],. 
and evaluate the integral using (4 oi)  w. >H 

6 ^.UI;. we thus obtain 

(1.18) 

X" virtue of the differential elation (».„, the flfth 
derivative equals th 

w(5)(t) --t2w- <t) + 4tw(t). (4.19) 

(20) 
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Inserting this in (4.18) and using (l.ll) we get the 

following expression for the function Cv-l/2(p): 

c v-l/2(p)=--(f)1/6{w(t)-^--^t2wl(t)+4tw(tJf..] . (4.20 ) 

»•> 

Differentiating this expression with respect to p (with 

account of the dependence of t on p with v constant) we get 

the following expression for the derivative: 

Ci-l/2(p)= i(f)-l/6/w.(t)-^ (f)-2/^)*(t)-W(t)]+...}.(».2l) 

These expressions will be used in the next section. 

^ 5. The expressions of the Herz function valid in the 

penumbra region. 

We rewrite the expression (3.02) for the Herz function 

replacing therein the quantity G* by its approximate value 

yrr/v and the quantity sin 6 before the integral by 6. 

We get 

2e^ U a —zE—.  
a  kab 1^0" 

]«(v)elve yv-3v. (5.01) 

The contour C may be taken identical with contour C^, 

which was defined in h 2, or may be replaced by some contour 

equivalent to C«. The main part of the integration path lies 

in our case (i.e. for finite values of the parameter p) near 

(21) 
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the point v = ka. Consequently, the function Xv_i(
kpa^ involved 

In (2.02) can be replaced by the value of (3.08) for v = ka. 

Introducing this in 0(v) we obtain: 

0(V) = 
CyjOft) 

<v-±(ka> + * kT V*"S Cv-±(kft) 

(5.02) 

For £ i and ifc8 derivative we must use expressions valid 

near the point v ■ ka. Such expressions wer» obtained in the 

preceeding paragraph. Retaining in (4.20) *nd (4.21) the prin- 

cipal terms only we get: 

1/6 
Cv^(ka) • - i(|&)   w(t), 

-1/6 
Cv_^(ka) = i(^)"   w'(t), 

(5.03) 

(5.04) 

where the variable t 1» connected with v by the relation 

,V3 
v = ka ♦(» t. (5.05) 

The numerator in (5.02) is obtained from (5.03) by replacing 

a by b and t by t', where 

/,.vU/3 
(5.06) v = icb + (*£)   t1. 

Equating (5.05) and (5.06) we obtain the connection between t 

and t'. Since the ratio h/a, where h * b - a, is small [we 

shall consider it of *he same order as (ka) '^j we must neg- 

lect it as compared to unity. We may then put 

(22) 

\TFl39GGim. ■pwnniwi.iym|w>»T>wiPnniii. 



(5.07) 

(5.08) 

is a quantity proportional to the height of the source over 

the earth's surface. We may call y the reduced height of the 

source. Hence, with neglect of terms of the order h/a or 

(ka)~ '* we have: 

1/6 
Cv_^(kb) - - l(^)   w(t - y), (5.09) 

where t is determined by (5.05).  (We have also replaced b by 

a in the factor before w.) 

Substitution of (5.03), (5-04) and (5-09) in (5-02) gives 

the desired approximate expression for </>(v). 

If we put for the sake of brevity 

1/3   i. 

•■w 1 - 

4 
(5.10) 

we obtain 

9KV) \2 J        w'(t)   - q w(t)     * (5.11) 

Remembering formulas (1.09) and (1.10), we may write for 

the quantity q 

1 ftaf/5 V£ -1 ± IU/2TT<) 
\X/ €   +   i(X/27Ti) (5.12) 

(25) 
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or with the same accuracy 

q * 1 
( x /  VE + i + i(x/2*.e) 

(5.1J) 

This form is slightly more convenient for calculations. 

We have now to substitute the value of 0(v) from (5.11) 

into (5-01) and introduce the integration variable t. Making 

this substitution, we may replace the quantity V v in the inte- 

grand by the constant value vka and also write b instead at 

a in the factor before the integral. The resulting formula may 

be written in the form: 

U. _ e tka0 -i-r 

"W 
1* JI \ e

lxt   yf* - y) 
w'(t) - qw(t) dt' (5.14) 

where x denotes the quantity 

1/3 
0, (5.15) 

which may be termed as the reduced horizontal distance from 

the source, while y and q have the values given by (5.08) and 

(5.1^). The contour C must be such that all the poles of the 

integrand are comprised within the contour; as we shall see 

later, they are all situated in the first quadrant of the t 

plane. Thus we can carry out the integration in (5-14) from 

ioo to 0 and from 0 to + oo. 

In order to get a more clear idea on the ratio of the 

horizontal and the vertical scale in the variables x and y, 

we write the expression for the parameter p, as defined by 

(24) 

L-i. '.','..!!S?* "'■'.''.■•'■ TSTBSlSWIBIIltKimmmmimim» 
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/*sl}), in terms of x and y. Prom the consideration of the 

triangle with vertices in the earth's center* in the source 

point and in the point of observation, the following approxi- 

mate expression is easily deduced: 

'•(tf-y'hk* (5.16) 

It follows that the equation of the horizon line is 

x = V y. Further we shall need the relation between the dis- 

tance R from the source as measured along a straight line and 

the horizontal distance ad  as measured along the arc of a 

great circle. Assuming a© >> h, i. e. (ka) '' x »  y, this 

relation may be written 

kR « kaö + (JO , (5.17) 

*' 

where 

CD 
2       3 

¥x + 2   12 (5.18) 

6. DISCUSSION OP THE EXPRESSION FOR THE HERTZ FUNCTION 

The expression obtained for the Hertz function is most 

conveniently written in the form: 

ikae 
ua =HiT-v <**y.q>. (6.01) 

where 

V(x,y,q) - e *£/T f elxt w(t - y) 
<(t) - qw(t) 

dt (6.02) 

(25) 
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The quantity V may be called attenuation factor by analogy with 

the quantity W, which was introduced earlier see (3.13)1. Let 

us determine the connection between V and W. Since in the de- 

nominators of expressions (3.13) and (6.01) the quantities R 

and aö can be considered as equal, it follows from (5.17) 

W = Ve-lu)0. (6.C3) 

We have now to investigate the expression (6.02) for V. 

We shall first consider the case of large positive values of 

p(illumlnated region). This case has been already discussed 

by another methcd (§ 3). But, as formula (6.02) w?3 obtained 

for the case of a finite p, it seems to be of interest to ver- 

ify that it is also valid in the case of a large p. If p >> 1, 

the integration path may be deformed so as to cross the point 

where V -t »p. Its main part will be situated in the domain 

of large negative values of t, where expressions (4.07) and 

(4.08) x'cr w and w' are applicable. Using them and applying 

the method of the steepest descent, we obtain 

V - eiüJo 
1 - i(Q/p) 

and in virtue of (o.03) 

W • 

(6.04) 

(6.05) r~= i(q/P) * 

The latter expression practically coincides with (j.15). 

We note that in the case when x is of the order of unity or 

large the condition p >> 1 is sufficient for the applicability 

(26) 
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L 

0f the method of steepest descent. If x is small, the further 
p 

condition y >> 2x is necessary.  If the latter condition is 

not satisfied but the inequality 

x << y << 1/x (6.06) *' 

is satisfied instead, the integral can be calculated by another 

method. Further simplifications in the asymptotic expression 

for w(t - y) can be then made, and the integral (6.02) reduces 

to the form 

dt. (6.07) 

Taking V-t as integration variable, we are led to an 

integral of the form (5.20) | (ka/2)1^ p. and we with V-t 

get again the Weyl-van der Pol formula (5.23) with the follow- 

ing values of 6  and T: 

7T lT,V7, T = e 

7T 

2l\fH 
(6.08) 

These values practically coincide with (5.22). 

Let us now investigate the most interesting case when p 

is of the order of unity (positive or negative). We know that 

this is the region of the penumbra, where the diffraction 

effects play ühe dominant part. 

If the values of x and y are of the order of unity, the 

most effective method of evaluation of the integral (6.02) is 

the representation of this integral in form of a sum of residues 

(27) 
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taken at the poles of the Integrand. 

Denoting by t * t0(q) the roots of the equation 

w'(t) - qw(t) - 0 (6.09) 

we obtain 

i r 
V(x,y,q) = e ¥ 2TIX tt 

8-1 Z3 

eixts  W(t  - y) 

- q' 
»<*■> 

(6.10) 

The roots t_(q) are functions of the complex parameter q. s 

For the value q « 0 they reduce to the roots t' = t (0) of the 
S    3 

derivative w'(t) and for q = oo they reduce to the roots t° = 

t_(co) of the function w(t). The phases of t' and tf are equal 
s j     s 

to ?r/3, so that 

s s 
il 

,-0 „ I o I a3 
s  I s I (6.11) 

We give here the moduli of the first five root, f and t°- 
s    s • 

1 
2 

4 
5 

t' 
s 

1.01879 
3.24820 
4.82010 
6.I6331 
7.37218 

2.33811 
4.08795 
5.52056 
6.78673 
7.99417 

For large values of s we have approximately 

12/3 

(6.12) 

(28) 
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To calculate the roots for finite values of q we may use 

the differential equation 

dt     1 
(6.1?) 

which can be easily derived from (4.02). The root tQ(q) is 

determined either as that solution of (6.1J) which at q = 0 

reduces to t' or as that solution which at q * CD reduces to 
s 

t°. Both definitions are equivalent. Stt-'ting from the first 
s 

definition, a series in ascending powers of q may be easily 

constructed for t ; this series will converge for q < \v ta I. 
S '       '  ol 

Starting from the second definition we may construct a series 

in descending (negative) powers of q; this will converge for 

These series shall not be written down here. 

It may be noticed that the value of t, which for large values 

qj is close to q , is not a root of equation (6.09). 

If the condition y << 2\/\jt_ \ is satisfied, we have the 

approximate relation 

w(t - y) 
(yVTj 

^ 

sh (yVv- (6.14) 

This relation permits us to estimate the value of remote 

terms in the series (6.10).  If s is so large that |q I << l^tg' • 

we have approximately t = te (0) * t'.  It follows from this 
So S 

and from expression (6.1*0 that the series (6.10) is always 

(29) 



convergent. But if x is small or if y is large, the series 

converges slowly, and to calculate its sum a large number of 

terms may be required. 

In the shadow region, where p is large and negative, the 

series (6.10) converges very rapidly and its sum approximately 

reduces to its first term. 

Our series (6.10) corresponds to that of Watson but has 

the advantage of simplicity. 

The fundamental formula (6.02) permits us to investigate 

not only the limiting cases (large positive values of p-illumi- 

nated region, large negative values of p-shadow region) but 

also the intermediate cases, namely the region of the penumbra. 

While in the limiting cases our formula leads to an improvement 

of formulas previously known (the reflection formula and the 

Weyl-van der Pol formula for the illuminated region and the 

Watson series for the shadow region), in the transitional 

penumbra region j.t yields essentially new results. 

The case when x and y are large and p-finite (short waves, 

penumbra) is of special interest. This case has not been in- 

vestigated before as the known formulas are not va3id here. 

In what follows we shall derive approximate formula«, which 

allow a complete discussion of this case. 

We introduce the quantity 

= * -fy, (6.15) 

(30) 
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which represents the reduced distance measured from the boun- 

dary of the geometrical shadow (and not from the source). In 

the region of geometrical shadow we have z > 0, in the visible 

region z < 0. Our parameter p, expressed in terms of z and x, 

takes the form 

P « 2-gx- - z + 2.; (6.16) 

In our case x is large an z is finite; hence we have approxi- 

mately p = - z. 

The main part of the integration path in (6.02) corres- 

ponds now to values of t of the order of unity; but if y is 

large and t finite we may use for w(t-y) the asymptotic ex- 

pression (4.07) which gives 

2(y-t)^ 
(6.17) w(t - y) = e 4 (y - t)"1/4 e 5 

or approximately 

w(t - y) = e y 
1? -1/4 i| -p/2-  i Vyt. (6.18) 

Inserting (6.18) into (6.02) and replacing in the factor 

before the integral the quantity x2 y h  by unity, we get 

if y V2 
V(x,y,q) = e 3 *   V^x -Vy,q), (6.19) 

where 

'l(2'q) =ÄT7 J^W^ 
zt 

qwTty 
dt (6.20) 

(3D 
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The terms neglected In (6.19) are (for a finite z) of the 

order of 1/V~y~ (or of 1/x). 

Therefore, the function V(x,y,q) of two arguments x,y and 

of the parameter q reduces in our case to a function V,(z,q) 

of a single argument z and of the same parameter q. The re- 

sulting simplification is quite essential. 

Let us now derive the relation connecting the attenuation 

function W with the function V-,. We have the identity 

4 2 3/2      1 3 
TJx (6.21) 

where o> has the value (5.18). Quitting in (6.21) the last 

term we obtain from (6.03) and (6.19) 

W 
iz5 

e5  V,(z,q). (6.22) 

Thus, in our approximation function W depends on x and y 

only through z = x -y y. 

The function V-^z^q) is an integral transcendental func- 

tion of the variable z. For a positive z we can evaluate the 

integral (6.20) as a sum of residues, and we get 

00 
 C "•       izt 

V1(8,q) = 12 Vir)   e s,S (6.23) 

8=1 
s " «> w<t8) 

(for 2 > 0), 

where t are the roots of equation (6.09) which were discussed 

earlier. The larger is z the more rapidly converges the series 

(6.23). For a sufficiently large positive z its sum reduces to 

(32) 
S.:|9 
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the first term. For finite negative values of z(e.g. - 2 < z 

< 0) the integral (6.20) has to be evaluated by quadratures. 

For large negative values of z this Integral may be 

evaluated by the method of steepest descent, and we get 

Vl<z'q> = T-+ (iq/z) 

According to (6.22), this gives 

w = 2/(i + ±a). 

(6.24) 

(6.25) 

Since approximately z = - p, this coincides with expres- 

sion (6.05). 

We note in conclusion that our fundamental formula (6.02) 

can be obtained by the method of parabolic equation, proposed 

by M. Leontovich and applied by hinr to the derivation of the 

Weyl-van der Pol formula. The application of Leontovich's 

method (in a slightly improved form) to our problem will be 

given in a separate paper. 
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«v  SOLUTION OF THE PROBLEM OF PROPAGATION OF ELECTROMAGNETIC WAVES 
ALONG THE EARTH'S SURFACE BY THE METHOD OF PARABOLIC EQUATION 

;i 

*' 

M. Leontovi'ch 

and 

V. Fock 

The problem of propagation of electromagnetic 
waves along the surface of the earth is solved by 
the method of parabolic equation proposed by Leon- 
tovich. In the first section the surface of the 
earth is considered as plane and the well-known 
Weyl-van der Pol formula is deduced. This formula 
turns out to be the exact solution of the parabolic 
equation with corresponding boundary conditions. 
In the second section the surface is considered as 
spherical, and the resulting formula coincides with 
that obtained by Fock by the method of summation of 
infinite series representing the rigorous solution 
of the problem. 

A new form of the solution of the problem of propagation 

of electromagnetic waves from a vertical elementary dipole 

situated at a given height above the spherical surface of the 
/1.2\* 

earth was given in a paper by Fock f   ) . I" this solution 

the field is calculated for points on the surface of the earth, 

but according to the reciprocity theorem the same solution 

gives directly the field at any point above the surface if the 

dipole is located on the surface itself. In the present paper 

it is shown that Fock's solution can also be obtained by 

another method, namely by reducing the problem to an equation 

of parabolic type for the "attenuation function". 

*In the sequel these papers will be referred as I. 

I PNCVIOUS MOI 0% 
I IS BLANK ^0 

(1) Hf 
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The method of parabolic equation was proposed by Leontovich 

and applied by him to the solution of the same problem for the 

case of a plane earth. Since the considerations of the original 

paper by Leontovich (•*]   need some modifications, we shall give 

in what follows a new exposition of the method, applying it 

firstly to the case of a plane earth and considering then the 

case of a spherical earth. 

1. THE CASE OP A PLANE EARTH 

We assume the time-dependence of all the field components 

to be of the form e"  . In the following this factor shall be 

omitted. 

Let us denote by k the absolute value of the wave vector 

and by r\  the complex inductive capacity of the earth: 

k ■ 2TT € + i 
CO s e + e 

The quantity 

c 
47TÖ 

(1.01) 

(1.02) 

having the dimensions of a length characterizes the specific 

resistance of the earth (this length varies from some tenths 

of a centimeter for sea water to ten and more meters for dry 

soil). Let U be the vertical component of the Hertz vector 

(the Hertz function). This function satisfies the equation 

AU + k ü - 0 . 

We shall write the Hertz function in the form 

lk-R 

(1.03) 

U w , (1.04) 

**This pap •* will be referred in the sequel as II. 

(2) 

* •'•*i^m*rfiiiiiiftfrrmMi*m,Mmmmmm 
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where  R is the distance from the point of observation to the 
source and the factor W is the so-called "attenuation function", 

»g it is known, for kR-+0 the «ertz function tends to infinity 

in such a way that W takes a finite value. We normalize W in 

such a manner that this value shall be equal to unity (it being 

supposed that both the source and the observation point remain 

above the surface of the earth). 

In the following we assume, however, that the source is 

located on the earth's surface. Let us introduce cylindrical 

coordinates r, z with the origin in the dipole and the z axis 

drawn vertically upwards. On the earth's surface we have z*0. 

+ z^ , The principal "large -JrT The distance R will be R' 

parameter" of our problem is the quantity | r\ | . For large |T} | 

the attenuation function W is a slowly varying function of 

coordinates. In order to characterize the slowness of its 

variation it is useful to introduce the dimenslonless coordinate: 

kr 

2 hi 
c» kz 

-Thl 
(1.05) 

and to consider W as a function of p and £. The derivatives 

of W with respect to its arguments will be then of the same 

order of magnitude as the function W itself. 

Substitution of (1.04) into equation (1.05) gives for 

the function W(p,C) an equation, which can be simplified if 

one supposes that the inclination angle of the ray to the 

horizon is small and that the distance from the source is at 

least equal to several wave lengths. These assumptions yield 

the inequalities: 

^ << 1 ;  kR » 1 , 

which are equivalent to 

| « 2jh|   ;    P » 2~i 

(1.06) 

(1.07) 

(5) 
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Since   |TJ| is assumed to be lar**    «-H« < 

in a wiJ range of the v.lu r» 'P »a clLTi1" (1-°7' ^ 
vaaues of p and < of the order ,/J^r    ^ %*? °8Se f°* 
(1.07) are valid,  the equation tJVFU . lne<>ual»les 1 n Ior "(P.C) assumes the form 

32W +   1 
(1.08) 

The terms omitted in (i oQ\  flT,0 rt- «.u l-i.uo; are of the order of i/i«i „ 
compared with those retained. //n' aS 

The boundary condition for W on the eari-M« « - 

obtained from the condition for the Hert2 vector     ' * 

1*J -    ik „ , 
az    r^ 

u (f°rz«o) 

given by Leontovich. it has the fprm 

(1.09) 

dw 
3^ + QiW-O      (forC-0) 

where 

q2 • i 
i       7T-6 

(1.10) 

(1.11) 

and 6 is the so-called loss angle, defined by 

6'arct8^''   °<6<f   • (i.r2) 

posit^VvXTo?: «?NS ::may require that ^ - 
the singular point ! o J L       P°S8\ble excePtlon of o-"."6uj.ar point p « 0 of equation fi nA\ 1  *.u    ~ 

~~ - housed or euoh that the^fii^Si 

(*> 



We now proceed to the formulation of the condition for 
,0. Since this is a point of some delicacy, we shall discuss 

it in a more detailed way.   f 

We must state, firstly, that in the region close to the 
«ource, i.e., for small values of kR, the inequalities (1.07) 
cease to be satisfied; the differential equation (1.08) and the 
expression for W to be deduced from it become invalid. The 
region of small kR is a "forbidden zone" for our- approximate 
function W. Therefore, the character of the singularity of the 
exact Hertz function cannot be used for the purpose of obtain- 
ing the required condition at p«0. For the statement of this 
condition we have to consider the properties of the Hertz 
function for large values of kR. 

It is known that for large values of kR the so-called 
"reflection formula" may be used. This formula gives an 
approximation for the Hertz function in the whole space 
above the earth's surface, where the inclination of the ray 
to the horizon is not very small. If the Hertz function is 
normalized as stated above, the reflection formula may be 

written 
ikR 

U = (1 + f) ^  , (1.13) 
R 

where 

f - 3 cos i ~"* % ~ 3ln y 

r\  cos 7 4 
(1.14) 

T) - sin 7 

is the Fresnel coefficient (7 is the incidence angle and 
cos 7 sz/R in our case). The reflection formula is certainly 
valid in the region where the inequalities 

.2 
1 « kz' 2r << k* (1.15) 

(5) 
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■ '■ \ .»I 

are satisfied. 

If | tj j is large and if 

1  « - « 1 , (1.16) 

then the Presnel coefficient f is close to unity, and we have 

ikR 
Ü - 2 (1.17) 

When expressed in dimensionless coordinates p,£, the inequalities 

(1.15) an<* (1.16), which are necessary for formula (1.17) to be 

valid, become 

(1.18) 1 « l|p « ship > 

1 « | «2 Jl^j". (1.19) 

To obtain the required condition for W at p-*0, we must 

carry out a double limiting process: firstly |T||-*OD and then 

p-*0. In the limit |T)|—* Q^the right-hand sides of the in- 

equalities may be dropped and we get 

1 « I- ; 1 « £ (1.20) 

If these relations are satisfied, the Hertz function tends to 

(1.17) and then 

W->2 . (1.21) 

Inequalities (1.20) are valid particularly for p-*0, if C>0. 

Hence the desired solution of (1.08) has to satisfy the condition 

|w - 2|—#0 for p-*0 and C > 0 . (1.22) 

.Hi 

(6) 
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ever, since p » 0 is a singular point of the equation for W, 

ndition (1.20) turns out to be not sufficient for the unique 

determination of the solution. Ve replace it, therefore, by 

a more stringent condition 

W - 2 0 for p-#0 and C > 0 * (1.23) 

which is, as it will be seen later, a sufficient one. 

Thus, for the determination of the "attenuation function" 

W we have the differential equation (1.08), the boundary con- 

ditions (1.10) and (1.2J) and the condition of finiteness of 

Ü in the region considered (for p > 0). 

To simplify the differential equation, we make the sub- 

stitution 

Wl* 4p"e_i^P  Wl * (1.24) 

Then the equation takes the form 

d2w\ dw\ 
+ i 0 . 

The boundary condition for V?1 will be 

(1.25) 

dW 
I + q^ » 0 (for C-0). (1.26) 

The condition at p»0 becomes 

wl 
£ 

F 
0 (for p-*0). (1.27) 

Since p-0 is a regular point of the equation for w^ (in 

distinction to the equation for W) condition (1.27) 1» a 

sufficient one. 

If] 
H 

*■» 

(7) 
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Solving (1.25) by means of separation of variables, we 

easily obtain a particular solution which satisfies the boundary 
condition (1.26); namely 

W, 
2 a 

e"lv P (cos vC - ri. sin v£) , (1.28) 

where v is the parameter of separation. 

For real values of v this expression remains finite and 

satisfies all conditions with the exception of (1.27). For 

complex values of v (except the case v-± iq^ expression 

(1.28) becomes infinite when C-*oo and therefore, does not 

satisfy the necessary conditions. If v» ± iq this expression 
transforms into the form 

Wl-e 
1*1    P ~  Qj C 

(1.29) 

According to (l.ll) and (1.12), we have 

| < arc qx < | , 

and, consequently, 

R* (q1) > 0 ; Re (iq^) < 0 

(1.30) 

(1.31) 

Hence the real parts of the coefficients of p and C in (1.29) 

are negative and expression (1.28) also satisfies all conditions 
with the exception of (1.27). 

In order to satisfy also the last condition; we construct 

a function which is a superposition of solutions of the two 
forms (1.28) and (1.29) 

w\ ? •-"*' (• cos v£ - -± sin vC '.) t f*0 dv + Ae 
iq^p - qxC 

(1.32) 

(8) 
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As easily seen, the singularity of w^ for p_»0 is determined 

by the behavior of f(v) for large values of v. The-required 

singularity can be represented'by the integral 

* •'51 •" *1V"P cos vC dv --=== e 
-Jp 

£ 
(1.33) 

It is clear, therefore, that at Infinity the function f(v) 

tends to a finite limit equal to the constant factor before 

the integral in (.1.33). Let us separate out in (1.32) the 

term 

W° = —i- e1 *  | e"lv2P  (cos vC - £ sln vA  dv.Jl.34) 

which corresponds to the limiting value of f(v). This term 

may be transformed into 

UT0 -    2  O 

1  -jr 

f2      ^       tz 

(1.35) 

W? satisfies equation (1.25) and boundary conditions (1.26). 

For p-tO we have 

,2 

lim (K-~=e "MtJ  )*-2jTTe * q,       (1.36) ^ ) 

(1*"4r*1*P )m"2^e   q* 
for any C > 0. Hence if we put 

wl * *1 + Wl ' (1.37) 

... ....   ... ■     . ■   ■■; 

(9) 
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the function ^ has to satisfy equation (1.25) and condition 
(1.26), while condition (1.27) gives 

1 1 "jr 

W2 = 2 ^HTe * Ql (for p -0, C > 0) , (1.38) 

If we put in (1.32) 

f(V> = ^=*l7f (l+f(v)) . (1.39) 

we get 

»i j§= e1 * f ,-l*«P (co8 vc- £ sin vCJg(v) av^^l
5 

(i.*o) 

and condition (1.38)becomes 
00 

9o v 
7T 

cos v£ „ _± sin vC\  g(v) dv + JT    Ae 
;   "*    . QIC 

7t 
5. «1  (for C > 0) . (1.41) 

The exponential function in (l.4l) admits an integral 
representation (valid for C > 0) 

00 

>"QlC
Ä£ai     f cos vg      a rr ql -g—T- dv . 

•I V* + qf (1.42) 

Multiplying this expression by q d£ and integrating over t  from 
0 to C we obtain 

^"^**g 

(10) 
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1 - e 
V oo 

sin v£ 
v (y2 + qf) 

dv (1.43) 

L 

Subtracting (1.42) from (1.43) and multiplying by  (ir/2)q1 

we g®^ the equation 
oo 

. q2       j    (cos  vc - i    sin vC)      g dV g 1     J v v* + q* 

-q,C     * 
+ rrq.e s - q.   , 

x 2     ■"• 

(1.44) 

which is to be compared with (1.41). Identifying (1.44) with 

(1.41) we obtain 
1T 

g(v) 
v + q. 

A —4 J7 e ll * (1.45) 

According to (1.39)* it follows 

7T 
/ v    4   i TT    v2 

JTT      v + q 
(1.46) 

Inserting this and the value (1.45) for A in (132), we arrive 

at the following expression for the function W,: 

ao 

■.■jt-'MJ riv P ( v dv 
v cos v£ - q1  sin v<;)  g   g 

v + q. 

+ TtqVV ' *1C (1.47) 

It is convenient for the investigation of this expression to 

replace the integral over the real axis by an integral over 

the line arc v « - 7r/4, since the new integral converges more 

rapidly. 

(11) 



In the sector 

it < arc v < o (l.*8) 

between the old and the new integration path there is, however, 
a pole v » - iq . The residue in this pole exactly cancels the 
additive term in (1.47), and we obtain i 

7T °° e -i(«/4) 

e'iv P v cos vC - q. sin vC) A
V
 
dv
g 1       v2 + q* 

(1.49) 

We can write instead of this 

-i (ir/4) +co e  v ' ' 

** •  -i(7T/4) 
-CD e v ' ' 

v? v dv 

v - iq1 
(1.50) 

since the integrand in (1.49) is the even part of the integrand  1 

in (1.50). We introduce a new variable of integration p putting 

-i it 
C     P   "I T 
— +  e H 

2p jr 
(1.51) 

we can shift the contour to the right at the distance C/2p, 
then the new variable p will be a real quantity running from 
-co to + oo . 

Putting for brevity 

-i j       — 7T 

1 qi -fp"*0 »  e      L= * T » (1.52) 

\mt 

(12) 
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get 

w, 
-f*p~ 

e 

2  + 2P 

ef rP* 
P + T 

P + 6 + T 
dp . (1.55) 

a> 

It is convenient now to go from w\ back to the original 

"attenuation function" W, according to (1.24). We shall have 

+ oo 

- 00 

>-p' P + T 

p + 6 + T 
dp . (1.54) 

This integral can be easily evaluated. It represents different 

analytic functions according to the sign of the imaginary part 

of Ö + T. But from (1.50) and (1.52) it follows 

Im(6) > 0, Im(x) > 0 , (1.55) 

so that in our case Im(ö + T) > 0. In this case the Integral 

(1.54) is equal to 

W m  2 - 4<5e ~(6+T)' 

6+T 

; 
i 00 

a2 „ e  da (156) 

This is the well known Vteyl-van der Pol formula, which we 

have had to derive. 
As it is seen from the derivation, the conditions stated 

above are sufficient to determine the function W in a unique 

way. On the contrary, any expression of the form (1.52) 

fwith f(v) continuous and absolutely integrablej could be added 

to the obtained solution without interfering with condition (1.22) 

(15) 
i-*-.,. 
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As it was already pointed out, the necessity of condition 

(1.23) is connected with the fact that equation (l.08) for W 

has a singularity at p«0 whereas equation (1.25) for W., has 

no singularities. 

The derivation of the Weyl-van der Pol formula by the 

method of parabolic equation is but little easier than the 

usual derivation. However, in cases more complicated than 

the considered case of plane earth the use of this method 

leads to much greater simplifications. 

2. THE CASE OP A SPHERICAL EARTH 

Let us denote by r, B,  0 spherical coordinates with the 
origin in the center of the earth globe and with polar axis 

drawn through the source (vertical dipole). The electric and 

the magnetic fields can be expressed by means of the Hertz 

function as follows 

E   -         1 d 
r      r sin 9 de 

1 -     iJL 
(2.01) 

H. ik oU 

*    de 

The function ü satisfies the differential equation 

AU + k2U - 0 

(2.02) 

(2.03) 

and also certain boundary conditions on the surface of the globe 

(r*a). As in the plane case we shall consider the modulus of 

the complex inductive capacity f) as a large quantity (compared 

with unity). This assumption permits us to write the boundary 

(14) 
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tlonS m an approximate form pointed out by M. Leontovich, 

*   peatedly used for the solution of similar problems! 'v . 

the plane case these conditions,are of the form (1.09) 

A by us abovej for the spherical case they become 

Br     ^If 
(for r «a) (2.04) 

.^ge conditions lead to the following relation for the field 

components: 

'd 4T 
H ,  (for r *a) 
0 

(2.05) 

Tf.e character of the singularity of the Hertz function at the 

point where the dipole is located is the same as in the plane 

case. Namely, if the dipole and the point of observation are 

located above the earth's surface and if R is their mutual 

distance, then it must be 

lim RU - 1 for kR-» 0 . 

*c shall look for the solution of the form 

.IkR 

(2.06) 

U e 
W , (2.07) 

Nhere W is the attenuation function. In the following we shall 

consider the dipole to be located on the earth's surface itself, 
ar>d, therefore: 

JT^T a' 2ra cos 0 (2.08) 

**t us examine what are the -mall and "large" parameters, 

*hich characterize our problem. First of all, in the case 

considered the wave length is extremely small as compared with r-'--5Ä; 

(15) 
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the radius of the earth. Hence ka is very large, as compared 

with unity (of the order of several millions). 

In solving our problem we shall take this circumstance 

into account from the very beginning; our aim is to find the 

asymptotic limiting form of the solution for large values of 

ka. Further, as pointed out above, we consider | tj | to be 

large as compared to unity. The ratio of the orders of magni- 

tude of these two large parameters is to be examined later. 

At last, we are concerned with distances although large as 

compared with the wave length, but small as compared with the 

radius of the earth. 

The idea of our method consists in the following. For 

large ka and large | TJ | the attenuation function W is a slowly 

varying function of coordinates, i. e. its relative variation 

over one wave length is very small. This is seen, for instance, 

from the fact that in a very large region W« 1 + f, where f is 

the Fresnel coefficient, (1.14). To express the slowness of 

the variation of W in an explicit form we shall introduce large 

(as compared with the wave length) scales of lengths: m in 

the direction of the radius vector (in the vertical direction) 

and m0 in the direction of the meridian arc (in a horizontal 

direction). Putting 

m 
r - a + mry ; 0* 9 

a (2.09). 

we introduce new dimensionless quantities x,y and assume that 

W - W (x,y) (2.10) 

and that the derivatives dW/dx and 3W/dy are of the same order 

of magnitude as W itself (this expresses the slowness of the 

variation of W). We shall show that by a suitable choice of 

the scales mr and m0 we can (in the case of large ka) obtain 

i 
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for W (x,y) an equation and boundary conditions which do not 
involve large parameters and which lead to a solution valid 
in the whole region considered., 

Under our assumptions the equation of the plane of the 

horiz°n 
r cos 0 = a (2.11) 

("the boundary of the direct visibility") can be written in 

the form 2 

r*a + a^- (2.12) 

or _2 

mry=2lT 
x • (2-13) 

Prom considerations of physical nature it is clear that the 
boundary of direct visibility must play an essential role in 
our problem. Therefore, it is convenient to make its equa- 
tion free from any parameters. This can be done by connecting 
m_ and ma  by the relation r    e 2 

mfl 
mr* -g| , (2.14) 

in virtue of which the equation of the boundary of direct 
visibility assumes the form 

y» x2 . (2.15) 

As mentioned above, we look for the solution in the region 
where 0 << TT/2. Therefore, we require that to small values 
of 0 should correspond values of x of the order of unity. 
This will be the case if m0 « a or, if we put m ■ a/A, 
we must consider A as a large number (as compared with unity). 
Equations (2.01) transform into 

r • a (l +-^S\    I    **.f > (2.16) 

and the distance R from the dipole [formula (2.08)J , when 
expressed in terms of x and y, reduces to 

R*aiJl+-i5  (y + -^5 - — ) 
A  I WF   \       2x2     6 / 

(17) 

(2.17) 

I 
I: 

*' 
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where in the curly brackets the omitted terms are of the order 
1/A and higher. 

Let us now derive the approximate differential equation 

for the attenuation function W. If R ls the radius vector drawn 

from the dipole, then from (2.03) and (2.07) follows the equation 

AW + 2^.^iS^LSl.o.      (2.18) 

Transformed to polar coordinates equation (2.18) takes the form 

B2W , 2 BW  1 32W . ctg 0 BW , 
—5 + —  + —R —n  + —m— —— + 
dr*  r dr vd de*   r  Bö 

♦i (*"-*){< (r - a cos 9) g + Ä ,ln e » 'I '0 .(2.19) 
Making a further transformation from the variables r and 0 

to x and y and retaining in the differential equation thus 
obtained only terms of the highest order in A, we get 

d2W , ika 
- q T — ■ m 

By2  2A5 j> + «5 + £} (2.20) 

We note that the omitted terms are of the order 1/A compared 
with those written down. 

As yet we have not fixed the value of the large parameter A. 
We can try to choose its value in euch a manner that for ka-#oo 
equation (2.20) does not contain any parameters and that is 

possesses a solution satisfying the necessary conditions. This 

is only possible if b   is proportional to ka. Therefore, we put 

(»1/3 

and equation (2.20) takes the form 

_\    y &y   ax J 
(18) 

(2.21) 

(2.22) 
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*IM note that this equation is simply the equation for the zero- 
*       (o) 
^er term Vr ' in the expansion 

W« W(0) +K W<°> + . . .        (2.23) 
PT 

■5 
Besides the assumption that Pr  is proportional to ka, one could 
consider two more possibilities. Firstly, we could suppose that 

A3 
- *0 for ka—»CD (2.24) 
ka 

or, secondly, that 

A3 
 »co for ka—»ao . (2.25) 
ka 

In the first case the limiting form of the equation would be 

^ -.0 . (2.27) 

and in the second case: 

3y 

However, it is easy to prove that the solutions of these equa- 

tions cannot satisfy the boundary conditions. Thus the only 

admissible assumption is that made above. 

We have now to formulate the boundary conditions. Using 

(2.17) and (2.21) and retaining only the terms of highest order 

with respect to A we obtain from (2.04) and (2.07) 

B <elkRW) - - 1 -==b (eikRW)  (for y.O)    (2.28) 
3y        4>T 

or in the same approximation 

— + 1  (~= + f J  W • 0    (for ymO)   .      (2.29) 
3y       vln      / 

(19) 
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This boundary condition involves the complex quantity 

'-1*-1® 1/3 1 c+ i (2.30) 

2U 

which may be written in the form 

q* q (2.31) 

where the value of q is given by (1.11) andjqJ» 1. Since 

Jqj is the ratio of two large parameters, the value of this 
quantity can be large as well as small. 

We introduce a length b (which is independent of the wave 
length) 

and put 

n 27Tb 
\ 

W 
C*-  6 

2/5 P/5 

i"(¥) 2/5 

Then the quantity q can be written in the form 

q * n 5/6 

4T + «n 

(2.32) 

(2.33) 

(2.34) 

As it is seen from Table 1, the parameter a varies for sea 

water and for different kinds of soil in relatively narrow 

(20) 

!fW!BSRSE5 
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Sea water very salty.   .   . 

Sea water scarcely salty. 

Ditto   

Swamp  

Moist soil  1  .     

and meadows J   

Fresh clean water .... 

Dry soil        . 

2.10- 

10( 

2.10* 

101 

ID1 

2.10 

6 

10" 

10 10 

0.0032 

0.016 

0.032 

0.16 

1.6 

3.2 

16 

160 

26.6 

69.8 

105 

276 

1110 

1680 

4420 

17500 

80 

80 

80 

15 

15 

15 

80 

9 

0.010 

0.016 

0.024 

0.009 

0.022 

0.029 

0.29 

0.08 

Note. The first column gives the ratio of the conductivity of 

mercury 6 to the conductivity of a given soil 6. The 

conductivity of mercury taken to be 6 «10440 (Q ' cm) -1 

limits (approximately from 0.01 to 0.03 and for dry soil to 

0.08), whereas the length 27rb varies from tens to thousands 

of meters. Therefore, n will be very large (such that I q | 

is of the order of A ) only for very short waves and dry soils 

In the general case, however, we must consider | q I as finite 

and retain q in the boundary condition which we shall write 

in the form 

— + U  + TT)   W*0 (for y«0) (2.35) 

(21) 



It is interesting to compare the equations and the boundary 

conditions for the two cases considered (the case of the plane 

earth and that of the spherical earth). Putting 

P-|Q|
2
 x, C -|q|y (2.36) 

we go back from our variables x,y to the old dimensionless 

variables p,C used in §1, Introducing in (2.22) and (2.35) 

the variables p,£ we obtain the equations 

d2W + i (2.37) 

(2.38) 

where the terms of the order ■£-.%  are due to the curvature of 
wP 

the earth. By omitting these terms, we return to equations 

(1.08) and (1.10) for the plane earth. 

We have now to formulate the condition at x«0. The 

corresponding condition for the plane earth has been discussed 

in fl. It has been shown there that we cannot utilize directly 

the character of the singularity of the Hertz function in the 

source, but have to consider the region, where the "reflection 

formula" (1.13) or its limiting form (1.17) is valid and have 

to compare these formulas with the desired solution in that 

region. 

For the spherical earth the condition at x« 0 does not 

differ essentially from the corresponding condition for the 

plane earth, and we can write it in the form 

\ 
i 

it 

W - 2 0 for x—>0 and y > 0 

(22) 

(2.39) 
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in close analogy to (1.25). 

Thus, our problem Is to obtain the function W from the 

differential equation (2.22), conditions (2.35) and (2.39)$ 
and the condition that W remains finite for all y > 0. 

The solution of this problem, which is of purely mathe- 

matical nature, can be obtained as follows. 

First of all, we simplify the differential equation 

(2.22) by the substitution 

-io>. 

where 

ÜJ. 

W- e 

2       3 

4x  2   12 

(2.40) 

(2.41) 

The geometrical interpretation of the quantity tx)Q  follows 
from formula (2.17) which can be written in the form 

** 

kR m kaö + CD. (2.42) 

Thus o)„ is the difference between the distance R measured o 
along the straight line and the corresponding length of the 
arc (measured along the earth's surface), both quantities 
being expressed in wave numbers. According to (2.40) and 

(2.42) we have 

tikR w _ eikae v 2.43^ 

so that the transition from W to V corresponds to the separation 

of the phase factor elkae instead of eikR. 

Inserting (2.40) into the differential equation for W and 

using the relation** 

(23) 
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2 —2ÄX + * 

By x 

a2<u 

■( By/       dx 
y ; 

(2.44) 

o.l 

V 2x 

we obtain 

^y5     3x    \    2x/ 
V« 0 . (2.45) 

This equation (like the original one) has a singularity 

at x-0, but this singularity can be removed by the substitution 

V=^Tw1 . (2.46) 

The result is 

■o2W,    3w. 

(2.47) 

The boundary condition for U±  is the same as for V, namely: 

3w3 

9y" 
+ qWx m  o (for y.o) . (2.48) 

We note that this condition is most simply obtained directly 
from (2.28)    [rather than from (2.35)1 

Finally,  the condition for x—*0 is 
,2 

"l 
h 

•0 (for x->0 and y > 0)  .      (2.49) 
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Transition from W to W, simplifies the problem considerably. 

»1 tly# equation (2.47) is not only free from a singularity at 

«0 but also its coefficients/ do not contain the argument x; 

therefore, it is soluble by the method of separation of variables 

Secondly, the coefficient in the boundary condition (2.48) does 

not involve x. Prom the fact that x» 0 is a regular point of 
equation (2.47), it follows also that condition (2.49) for x*0 

(together with the other boundary condition) is sufficient far 

• unique determination of W.. 

We shall solve equation (2.09) by the classical method of 

separation of variables. Considering particular solutions of 

the form 

W. » X(x) Y(y) (2.50) 

«.» 

we get the following equations for X and Y 

Y" x« Y" + y* - i £- = t 

where t is the parameter of separation. Hence 

(2.5D 

it X , (2.52) 

Y" + (y - t) Y » 0 . 

The solution of equations (2.52) and (2.53) is 

(2.53) 

X(x) - eitx , 

Y(y) « w (t - y) , 

(2.54) 

(2.55) 

where w(t) is an integral of the equation 

w"(t) - tw(t) . (2.56) 

(25) 
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For w(t) we may take the function 

w(t) - J tz - * 3 

dz , (2.57) 

where the contour r is a broken line drawn from infinity to 

zero along the straight line arc z m - 27r/3 and from zero to 
infinity along the positive real axis. The function w(t) 

is an integral transcendental function which can be expressed 

through the Hankel function of the first kind and of the order 
1/3 according to the formula 

w(t) 
*   2n 

7T 
( - t) i  H(i) 

1/3 
[| ( - t)2/>] (2.58) 

The properties of w(t) are summarized in I. The function 

w(t - y) remains finite for y—>+ oo . The second integral of 

equation (2.53) which may be written in the form 

Y2 (y) 
Ifl w [e 3  ( t - y)J (2.59) 

does not possess this property and must be rejected. Expression 

(2.50) will satisfy the boundary condition (2.48) if we choose 
the parameter t so as to satisfy the relation 

w'(t) - qw(t) « 0 (2.60) 

As it was shown in I all roots t of this equation lie 

in the first quadrant of the t-plane; the distant roots are 

situated near the straight line arc t»tr/3. Therefrom follows 
that the function 

(26) 
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ixt 
W - e s w(t8 - y) (2.61) 

remains finite for all positive values of x and y, satisfies 

the differential equation (2.4?) and the boundary condition 

(2.48). All these conditions are also satisfied by the function „, 

f  elxt w(t - y) 
1 J  w'(t) - qw(t) 

t) dt , (2.62) 

where C is a closed contour in the t-plane containing the roots 

of (2.60) and tK,t) is holomorphic inside this contour. 

We have now to satisfy equation (2.49). This can be done 

by a suitable choice of the contour C and of the function ^(t). 

It is clear that the contour C must go to infinity, since the 

integral along any finite contour cannot have a singularity 

at x«0. The singularity is caused by distant parts of the 

contour. But for large values of Jt | the following asymptotic 

expressions are valid 

, w(t - y) 
w^tT - qw(t) 

-y-JT 
e 22 

3 

JT 
4T 

(- 
s£ arc t < 

< arc t ^ 

0 
4TT\ 

(2.63) 

27T 

3 
the two expressions coincide J . The contour C has two branches 

going to infinity. We shall draw one of them along the positive 

imaginary axis (from loo to 0) and the other along the positive 

real axis (from 0 to + oo); the lower expression (2.63) is valid 

on the first branch, the upper - on the second branch. The 

singularity of the Integral (2.62) for x»0 is the same as that 

of the integral 

(27) 

!-£. 
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W. 

iOD 

S eixt + y JZ ^ 

^♦J e lxt - y4T^(t) _dt 

(2.64) 

This is true in spite of the fact that the asymptotic expressioni 
(2.63) are invalid for small and finite values of t, because the 
integrals over the corresponding parts of the integration path 
remain finite and have no singularities. 

Assuming the function f(t)  holomorphic and bounded in the 
first quadrant we can replace the upper limit in the second 
integral by i oo Then, putting t»ip , we get 

W; = 2e1^ f    e'^^yP ,(lp2, dp . (2.65) 
- 00 

But we have 
+ 00 2 

f   e-
xp2 + -ftyp --U/fe dp -f'1 

(2.66) 
00 

Therefore, if we suppose that f(t)  is a constant quantity equal 
to 

-i 7T 

(2.67) 

we obtain 

W K  2 
1 JT 

*t (2.68) 

which is the required singularity of W,. Inserting the obtained 
value of f(t . in (2.62) we are led to consider the integral 

(28) 
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which satisfies the differential equation and the boundary 

conditions and has the required singularity for x«0. However, 

we cannot yet assert that the integral (2.69) gives the solu- 

tion of our problem. In fact, the more general form (2.62) 

of the integral will have the same singularity, if the function 

^(t) is holomorphic in the first quadrant and tends to a 

constant value (2.67) at infinity. The more general integral 

satisfies the following relation 

11m 
x-»0 (Vjf-O- f(y) (2.70) 

where f(y) is some bounded function, the form of which depends 

on #(t). But if y(t) is a constant, the function f(y) turns 

out to vanish identically. This can be shown by evaluating 

the integral (2.69) by the method of steepest descent (the 

main part of the integration path lies in the neighborhood 

of the point t * - |_(y - x )/2xJ , i. e. f or large negative 

values of t). We shall not perform these calculations since 

similar ones are made in I. 

Hence expression (2.69) satisfies all conditions includ- 

ing (2.49). 

We shall not attempt to give here a rigorous proof of 

the uniqueness of the solution, but it is clear that by adding 

expressions of the form (2.6l) to the solution obtained con- 

dition (2.49) is violated. 

Going back, according to (2.46), to the function V, 

we get the following expression for this function: 

(29) 

'n-V-W^taiHfr.V':-** 
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Of,?, ....«15«= r."t»!.n,... 

■jfc> 

9* 

'(".o-^JJJfet dt . (2.71) 

Using (2 A3)  and substituting in the denominator of (2.07) 
a© for R, we come to the final expression for the Hertz function 1 

ikae 
U» 5 v (x, y, q) . 

ad 
(2.72) 

This expression coincides exactly with that obtained in I by 

the method of summation of series. 

A detailed discussion of the expression obtained was given 

in I and shall not be repeated here. 

Comparing the two methods of derivation of formula (2.71) 

we arrive at the following conclusions. The method of the 

summation of series is more cumbersome but it is at the same 

time more rigorous. This is connected with the fact that all 

approximations are made in the ready solution, which makes the. 

estimation of the order of disregarded terms easier. The method 

permits also to use condition (2.06) directly without resorting 

to the "reflection formula" which requires a foundation itself. 

On the other hand, for the method of parabolic equation it is 

characteristic that all neglections are made in the initial 

equations. This requires delicate reasoning which is difficult 

to perform with a complete rigour. The lack of rigour is com- 

pensated by the comparative simplicity of the second method. 

This simplicity is the chief advantage of the method since it 

gives the possibility to find approximate solutions of other 

more difficult problems of the same kind where the exact solu- 

tion Is unknown. 
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THE FIELD OF A PLANE (*AVE NEAR THE SURFACE 
OF A CONDUCTING BODY 

V. Fock 

For the field induced by an incident plane wave 
on and near the surface of a convex body of finite 
conductivity approximate formulas are derived. Since 
these formulas give also the current distribution in 
the skin-layer on the surface, they may be used for 
the calculation (by means of definite integrals) of 
the field at arbitrary distances from the body, yield- 
ing thus an approximate solution of the general 
diffraction problem. 

INTRODUCTION 

In our paper "Distribution of Currents Induced by a Plane 

Wave on the Surface of a Conductor" the following fundamental 

result has been obtained. The values of the tangential com- 

ponents of the total magnetic field on the surface of a perfect 

conductor are equal to the surface values of the corresponding 

components of the field of the incident wave multiplied by a 

certain universal function G(i),  depending on the argument 
|=*i/d, where I  is the distance from the geometrical boundary 

of the shadow, measured in the plane of incidence and d is the 

width of the penumbra region. The quantity d is equal to 

d» — R , where X is the wave length and RÄ is the curva- 7T   O 0 

ture radius of the normal section of the surface by the plane 

of incidence. The surface current density being proportional 

and directed at right angles to the magnetic field. This 

result immediately gives the current distribution on the sur- 

face, the knowledge of which enables the calculation of the 

amplitude of the scatter wave. 

(1) 
PftCVIOUt MM        Wk 
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In this paper we intend to generalize this result in two 
respects. 

Firstly, we shall find the field distribution not only on 

the surface of the body, but also in its neighborhood (at dis- 

tances that are small as compared with the curvature radii of 

the surface). Secondly, we shall not consider the body to be 

a perfect conductor but shall regard it instead as a good con- 

ductor only in the sense that on its surface the Leontovich 

conditions for the tangential field components are valid. 

The method we shall use will also differ from that used 

in the previous paper. In the previous paper we have obtained 

our result by making use of the local character of the field 

in the penumbra region. We started from the exact solution 

of tiw problem for a particular case and then performed the 

approximate summation of the series. By the principle of the 

local field the result could be applied to the general case 

also. Now we shall find the solution directly for the general 

case of an arbitrary surface, using the method of parabolic 

equation proposed by Leontovich and developed in our common 

paper for the case of a point source (dipole), located on a 
plane or on a spherical surface. 

1. THE GEOMETRICAL ASPECT OF THE PROBLEM 

Consider a convex body and a plane wave incident in the 

direction of the x axis. If the equation of the surface of the 
body is 

f (x,y,z) - 0 , (1.01) 

then the equation of the curve, representing the boundary of 

the geometrical shadow on the surface, will be obtained from 
the equation of the surface and the relation 

4L i """"MBS 

£.0. 
3x 

(2) 

(1.02) 
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Let us take on the surface a point lying on the boundary 

of the geometrical shadow and consider it to be the origin of 

0ur coordinate system. The z axis we direct along the normal 

to the surface (towards the air). Since on the shadow boundary 

the normal is perpendicular to the direction of the wave, the 

z  axis so chosen will be perpendicular to our x axis. The 

direction of the y axis we choose in such a way as to obtain 

a right-handed coordinate system. 

In the vicinity of any given point the equation of the 

surface will be of the form 

z + £ (ax + 2bxy + cy ) » 0 . (1.03) 

Since the surface is convex and the z axis is directed to the 

convex side we have 

a > 0 c > 0 ac - bc » 0 (1.04) 

The equation of the cylindrical surface which separates 
the region of the geometrical shadow is obtained by eliminating 
x from (1.01) and (1.02). In our case this equation will be 

of the form 

z + ac - b 

2a 
y2«0 (1.05) 

The curvature radius of the normal section of the surface by 

the plane of incidence is equal to 

R -r (1.06) 

Our problem is to find the electromagnetic field near the 

surface, at distances (from the surface and from the origin) 

that are small as compared to the curvature radius IL. 

(3) 
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2.  SIMPLIFIED MAXWELL'S EQUATIONS 

We suppose the time dependence of the field components to 

be of the form e"   and omit this factor in the following. By 

k we denote the absolute value of the wave vector 

k - 2TT U) 
c (2.01) 

Each of the field components satisfies Helmholtz's equation 

A? + kcJ (2.02) 

where A is the Laplace operator. Since we deal with a field, 

due to a plane wave traveling in the direction of the x axis, 
Ikx 

we. shall separate out the factor e   in ? and put 

¥ *elkx ¥* . (2.0?) 

Then f • will satisfy the equation 

B2f*  d2¥*  d2¥*  rt<, df* 
T-+TJT + ~ + 2ik -- - 

3z2     dx dx*   3y< 

The field components satisfy the Maxwell equations 

BE   dE„ 
z  - r-^ *ik Hx , etc., 

02 

(2.04) 

3y 

3y   3z 
- ik E , etc. 

(2.05) 

(2.06) 

Let us now separate out in each of the field components the 
ikx 

factor e   and put 

E. ikx , etc; H, Hx elkX ' etc' (2.07) 

W 

üi. 
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in this way we obtain for the quantities marked by an asterisk 

the equations: 

cE* 

3y~ 

BE* 
•—>■ =ik H' 

BE»  9E • 
—£ ... —2 .. ik E* — Ik H» , 

3x     z    y 3z 

6E* y 
3x 

o-E* 
—- + ik E* 
By      y 

ik H • ; 

\- (2.08) 

\v* 

ay 

3H* 
A 

dx 

 y 

dH* 

dx 

- ik E* 

ik H* =: • ik E* , 

3H» 
—x + ik H* 
By      y 

ik E* z 

(2.09) 

We shall now introduce an assumption which will be of 
primary importance for the following; namely, we suppose that 
the quantities with asterisks are slowly varying functions of 
coordinates in the sense that their relative variation along 
the distance of one wave length is small. 

Besides, we suppose that the variation of these quantities 
in the z direction (normal to the surface) takes place more 
rapidly than in the x and y directions (parallel to the surface). 

These assumptions can be stated in the form 

(5) 
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3?« 

3z 
,o(JSlf), ai.'.o/iLf), ll'.o/lLf*   (2.10) 

\m  /   dx    yn1 ^/   dy    \m» y 

m and m* being dlmenslonless parameters and 

m» » m » 1 . (2.11) 

The truth of these assumptions follows from the fact that the 

final solution (which is unique) actually satisfies them. 

It follows from these assumptions that the second deriva- 

tives with respect to x and y in equation (2.04) are small as 

compared to the second derivative with respect to z. Hence 
this equation takes the form 

|?P + 2 He SS! . 0 . 
3z<-      dx 

(2.12) 

It follows from (2.12) that ml   is of the order of m2 and we can 
put 

p 
rn' « m (2.13) 

The relations (2.10) can now be written in the form 

i 

3: 

dx r=it^0&^r06')'M 

From relations (2.14) (that are valid for all the field 

components) it follows that in equation (2.12) the terms omitted 

are of the order l/m as compared with those written down. 

Terms of this order of magnitude shall always be neglected in 
the following. 

(6) 
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Let us estimate on the basis of (2.14) the order of magni- 

tude of the different terms in equations (2.08) and (2.09). In 

doing this, we consider H* and H* as the principal quantities 

to which all the other quantities are to be compared.  As to 

the relative order of magnitude of H* and H*, we shall suppose 

tne order of one of these quantities to differ from that of 

the order, at the most, by the factor m. 

Prom the first equation (2.09) we get 

«.-<*«;) ♦•&».) • (2.15) 

Inserting this astimation into the second equation (2<08) we 

see that the term SE*/9Z is very small (of the order of l/m ) 
A. 

as compared to the term ik H*. On the other hand, it is seen 

directly from (2.14) that the term dE*/dx is of the order l/m*1 

as compared with ik E*  The term of this order of magnitude 

must be disregarded. Than the second equation (2.C8) gives 

simply E.,*' Kr Similarly the third equation (2.08) gives 

E* - H*. and the first equation (2.08) shows that K* will be 

of thi order 

*-&$ +oH • (2.16) 

These values are also in agreement with equations (2.09). 

Hence all the field components may be expressed, with 

neglect of small quantities, in terms of K* and H*. Since 

these expressions do not involve derivatives with respect to 

x, they have the same form for the field components without 

an asterisk, namely: 

(7) i 
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.  i /3H. 3H. 

3y  Bz y 

Ey = »a • 

E. « - H. 

- 

H. 

y ' 

i  3H. BH. 

3y 

(2.17) 

The last equation can be obtained also directly from div H » 0. 

To these equations we must add the Helmholtz equation for each 

of the field components or the equation of the form (2.12) for 
the quantities with asterisks. 

3.  SIMPLIFIED BOUNDARY CONDITIONS 

As shown by Leontovich, if the absolute value of the com- 
plex inductive capacity of the medium 

c + l 47T6 
ck (3.01) 

is great as compared to unity, there is no need to consider 

the field within the medium, but one may take into account the 

influence of the medium on the field in the air by means of 

the boundary conditions, connecting the tangential components 

of this field on the surface of the reflecting body. 

Leontovich's conditions (to be more correct, their genera- 
lization to the case when the magnetic permeability of the 

medium is different from unity) can be written in the form of 
three equations: 

(8) 
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(3.02) 

Ex " nxEn s ]%^y H2" n* Hy)  ' 

W*B J^Vnx<Hz) * 
Ez " nzEn * JT(nx Hy " ny Hx) * 

only two of which are independent. 

In these equations n , n, n are components of the unit 
A    jf     £* 

vector of the normal to the surface and En has the value 

2n " nx Ex + ny Ey +\  Ez • (3.03) 

It can be shown that the conditions (3.02) are valid if 

the following inequalities are satisfied 

kR, 

| nu-| » i > 

\v\ » i > 

(3.04) 

(3.05) 

where R is the smallest curvature radius of the normal section o 
of the surface. 

In the case of a conductor, in which the displacement cur- 

rent is negligible, these inequalities have the following mean- 

ing. According to the first inequality the square of the depth 

of the skin-effect layer must be small as compared to the square 

of the wave length in air. According to the second inequality 

this depth must be small as compared with the curvature radius 

of the normal section of the surface. 

In the following we put the magnetic permeability equal to 

unity and transform conditions (3.02) using the relations 

E = H_ and E_ * - H„ obtained above. Prom (3.02) we get y   z    z    y 

(9) 

mammsmmm 

!f- 

..  !! 

: i 

.i 
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(ny Hz " nz Hy) C1 --0*-(* + JT) (3.06) 

(3.07) 

Using for H the estimate (2.16) and considering the quan- 

tity 4T t0 De large (of the order of m or larger), we infer that 

the left-hand side of (3.07) is small as compared with the sepa- 

rate terms of the right-hand side. Replacing this quantity by 

zero we obtain instead of (3.07) 

ny Hy + nz Hz * ° ' 

Using this relation we get from (3.06) 

(3.08) 

»^--(VTJO H (3.09) 

We may insert in this relation the expression for E from the 

first equation (2.17). Since the y axis has a tangential (or 

an almost tangential) direction, we can differentiate (3.08) 

with respect to y and put 

n„ —*• + n„   
y *..  z ay ay 

(3.10) 

We have omitted in equation (3.10) small terms, depend- 

ing upon the surface curvature and similar to those which have 

been neglected when obtaining the condition (3.02). As a 

result we obtain from (3.09) 

dH. 
n 

3Hy + n_ -—*•   sc - 
y dy   2 3 

ik 
(=«**) 

K (3.11) 

(10) 
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,§ boundary condition contains only one component H . Having 
mind the dependence of H upon x, we can write with the same 

tccuracy , 

3n 
- i 

ST 
H. 
y ' 

(3.12) 

where in the left-hand side the derivative is taken along the 
normal. Now, estimating the order of magnitude of the first 
term in the left-hand side of (ill) and considering n and n 

*   y 
to be small of the order of 1/m, we infer that this first 
tenn is small as compared with the second one. We shall write, 
therefore, 

i    1 1    if 

3z 
ik (n* + 7r) H. (3.13) 

In addition to the differential equation and the boundary 
condition on the surface of the body, the quantity H must 
satisfy the following requirement (condition at infinity). 
In the illuminated region at large distances from the shadow 
boundary the part of ft, which has the phase of the incident 
wave, must have a prescribed amplitude. (Under large distances 
we mean the distances which are still small in comparison with 
the surface curvature radii although they involve many wave 

lengths.) 

Thus, the field component KL (and, therefore, E) has been 
completely separated from the other field components: it 
satisfies a separate differential equation, a separate boundary 
condition on the surface of the body and a separate condition 
at infinity. These conditions determine H in a unique way. 

After having determined IL., we can find Hz from the 
differential equation, condition (3.08) on the surface of the 

(11) 
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body and from the condition at infinity. The latter condition 

consists in the requirement that the part of H„, which corres- 

ponds to the incident wave, must have a given amplitude. Finally, 

knowing Hy and Hz, we can determine all the other field com- 

ponents from equations (2.17). 

*4. DETERMINATION OF THE FIELD COMPONENT ■V 
Let us put 

H» H° eikx *♦ , (4.01) 

where H is the amplitude of the incident wave*at infinity. 

According to (2.12) and (3.13) the function iifmust satisfy 
the equation 

if. 

e2¥* 

and the boundary condition 

+ 2ik 3y» 
dx 

(4.02) 

21? + ik (ax + by + -Jk^  f' 
3z        v 4^ / 

(4.03) 

on tne surface 

z + 
»(■ 

ax + 2bxy + cy 
■)-• 

(4.04) 

We have replaced n in (4.03) by its approximate value 
A 

obtained from the equation of the surface. 

Suppose that the function f* depends upon the coordinates 

x, y, z only by means of two variables 

l m m (ax + by) , (4.05) 

C • 2am | z + «I fax2 + £fcxy + cy2 

(12) 

)]■ (4.06) 
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where m is a large parameter v.r.ioh •.•.'_„ be defined below. The 

scales of the quantities I  and C  :
J
W
? cr.csen in suih a way that 

equation (1.05) (giving the sh:-»:icw :cund»ry in space) takes 

the form 

C « «* . (4.07) 

The values of the variable £ can be only non-negative ar.c" 

these of the variable %  can be bcth positive and negative. 

In the illuminated region cf the space we have £  < „J~£~ 

and in the shaded one i  > -JC » where the square root is taken 

with a positive sign. 

Calculating the derivatives we obtain: 

i ,, re! I (4.08) 

*» 

2*! 
3E 

^i« 
(4.09) 

and equation (4.02) takes the form 

(4.-0) 

We now choose the parameter m in such a way as tc make 

the coefficient in this equation equal to unity 

~l~ jfe •J ?v (4.11) 

Since we consider the wave length to be very small as ecnv 

pared with the curvature radius of the surface, the value of 

our parameter m will actually be large. The expressions for 

the derivatives can now be written in the following form: 

(13) 
<3opf available to DTIC do« not 
wmfr Julir fawttb wpioductioa 
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dy» . _Jc 

dx 2n? (r+2sif)'   <••»> 
d¥* B k dy» 

9z   m dc (4.13) 

It is seen from th&se equations that the estimates (2.14) 
will be valid, provided the derivatives of ¥ * with respect to 
ft and to C are of the order of ¥<• itself. 

Equation (4.10) takes the form 

a2*. 
8?" 

+ i (4.14) 

The boundary condition (4.03) becomes 

By» 
+ lft y * +q!»'i0, (4.15) 

where we have put for brevity: 

k_ 

2a 
(4.16) q «5 ■—■^r Ä —~— 

The quantity q will be, in general, finite, but can be 

also small (for a ery good conductor) or large (for an almost 
plane surface). 

The condition at infinity for y *•consists in the follow- 

ing. In the illuminated region that part of ¥ *% tha phase of 
which vanishes, must have an amplitude equal to unity. 

To simplify the differential equation we put 

-iftC + l(ft3 /3) 
¥ * * e V . (4.17) 

(14) 



Then the equation and the boundary condition for V will 

3ZV 

s? 
+ i + CV - o , (4.18) 

|2 + qV~0, C-0 . (4.19) 

The conäition at infinity (large negative values of £) becomes 

V = e - V* , (4.20) 

Where V* corresponds to the reflected wave. We denote by 

0 the phase of the first term in (4.20) 

d> 
3 

(4.21) 

and by 6 * the phase of V * . The phase 0 * can be determined 

by calculating from geometrical considerations the phase differ- 

ence <t> *- 0 between the reflected and the incident wave and by 
using the known value (4.21) of the phase 0. 

It can be shown that the phase 0 * so determined is equal 

to the extremum value of the function 

<z> •te +| (c -1)5/2 -i ( -1) 3/2 (4.22) 

i.e. equal to the value of t, for which d0* /3t ■» 0. Similarly 

the given phase (4.21) is equal to the extremum value of the 

function 

*«te-f(c-t)V2 t (4.23) 

We omit the derivation, since it is rather cumbersome and 

since the result can be obtained in a purely analytical way 

from the final form of the solution (see § 6). 

(15) 



«I % 

112 

Equation (4.18) coincides with that which occurs In the 

problem of diffraction of radio waves around the earth's sur- 

face. This equation (with different conditions at infinity) 
was investigated in our previous paper. 

Equation (4.18) admits particular solutions of the form 

V e1^ w(t - C) , (4.24) 

where w(t) is an integral of the ordinary differential equa- 
tion of the second order 

w"(t) = tw(t) . (4.25) 

We shall need both integrals of equation (4.25). As one 
of these integrals we take the function 

Wl (t) * TJW" J zt -4*3 
e dz , (4.26) 

where the contour I\ goes from infinity to the origin along the 

ray arc z « - ^ 7r and then returns to infinity along the ray 

arc z so (along the positive real axis). Another (linearly 
independent) integral is the function 

w2 (t) -  I I zt - 
p   dz (4.27) 

where the contour ?2  is an image of the contour ^ in the real 

axis of the z plane. Tor raal values of t the functions *    (t) 

and w2 (t) are complex^conjugates. We shall have 

Wj (t) * u (t) + iv (t) , 

w2 (t) . u (t) - iv (t) . 

(16)        J 

(4.28) 
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^- real functions u(t) and. v(t) and their derivatives exten- 

' . four-figure tables (range from t ■ - 9.00 to t= + 9.00, 
§lvc * h 
interval 0.02) have been calculated by us. 

The asymptotic expression f6r w1(t), valid for large 

negative values of t (and also in a certain sector in the 

plane of the complex variable t) has the form 

wx(t) = ( - t)-1/* exp (i | ( - t)5/2 + i | V  (4.29) 

Similarly 

w2(t) = ( - t)'1^  exp (.ifC-t)^.!^. (4. 30) 

Prom (4.23) and (4.30) we see that.the phase of the 

expression 

Mt w2 ( t - C) (4.31) 

Is just equal to 0; and we know that the extremum of 0 gives 

the phnse of the incident wave. Therefore, we can expect that 

the integration of the function (4.31) along a contour which 

passes near the point of the extremum of the phase, gives an 

expression, the phase of which is equal to that of the incident 

wave (4.21). In fact, making use of the relations: 

oo 

75s J 
-oo 

xp 
e v (p) dp * e 

1   "* 
:-* X-' 

(Re x > 0) (4,32) 

-i 77 

2e v (P) , (4.33) 

the following equality may be proved 

3 = __L_ 
2$TT I .ite w2 (t - C) ct (4.;4; 

(17) 

1 
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where the contour C is described along the ray arc z ** 4 IT fro» 

infinity to the origin and along the ray arc z s - i IT from the 
origin to infinity. 

On the other hand, if the function f(t) is such that its 

phase for large negative values of t Is equal to - 4 ( - t)*'2 

then the phase of the expression 

ex^  wx (t - C) f(t) (4.35) 

is equal to 0 * [[in formula (4.22)] . Hence, integrating exp- 
ression (4.35) along a contour, which passes in the vicinity 
of the point of the extremum of the phase, we obtain an expres- 
sion which has a phase equal to that of the incident wave. 

Prom these considerations it follows that we may seek the 
expression for V in the form 

/» 

e1** {w2(t - C) " f(t) wx(t - C)> dt . (4.36) V«- -1 

zfrT 

This expression satisfies equation (4.18) and the condition 
at infinity (4,20). To satisfy also the boundary conditions 
(4.19) we have to determine the function f(t) from the relation 

w2(t) " qw2(t) " f(fc) {*!<*> " ^(t)} , (4.37) 

whence 
,  K      

wo(t) - qw?(t) 
f(t) a ~-f —  

wx(t) - qwx(t) 
(4.38) 

It is not difficult to see from (4.29) and (4.30) that 
the obtained function f(t) has the correct phase. 

(18) 

_?*<^fe««t. 



We, finally, obtain 

iftt 
Vs 

2/TT , 
w2(t-C) 

W0(
t)-<iwo(t) 

*1(t)-qw1(t) 
wx(t-c) r at 

With this value of V the expression 

H -H° e11««"1« + K*3/*) v 
y  y 

gives the y component of the magnetic field. 

Using the relation 

v[(t)  w2(t) - Wg(t) w1(t) a» - 2i 

(4.39) 

(4.40). 

(4.41) 

it is easy to verify that at £»0 (on the surface of the body) 

the expression (4.39) for V becomes 

JT J 
,iet dt 

wx(t) -  qwx(t) 
(4.42) 

*«   ! 

Inserting this in (4,40), we arrive at the following 

conclusion. The tangential components Ht of the magnetic 

field on the surface of the body are equal to their values 

Kl    for the external field, multiplied by a certain universal 

function of the reduced distance £ from the shadow boundary 

and of the parameter q (the latter depends upon the wave 

length and the properties of the body). We have 

H „ex 
tg  "tg H£ o(t»q) , (4.43) 

(19) 
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where 

:i v/ 

G(|,q) M'n 
4rr  J 

.iet dt 

w1(t) - qwx(t) 
(4.44) 

This result is in agreement with that obtained In our pre- 

vious paper by a wholly different method and represents its 

generalization to the case of a finite electrical conductivity 

of the body. 

For a perfect conductor q ..«■ 0 we have 

0(^,0) -0(|) , (4.45) 

where G(£) is a function tabulated in our previous paper. 

We note that the quantity V determined by (4.42) occurred 

also in our solution^ of the problem of the propagation of radio 

waves around the^carth•s surface [it was denoted there by 

ViCe.q)] . 

DETERMINATION OP THE COMPONENT H; 

AND THE OTHER FIELD COMPONENTS 

We have still to determine the component of the magnetic 

field H_ with help of the conditions formulated at the end of 

S3. 
We begin with a particular case, when the magnetic vector 

is polarized parallel to the z axis. Then H° «■ 0 and, according 
to the results of §4, we have in our approximation H ■ 0 in 
all the region considered. Then, according to the boundary 

condition (3.08), we shall have H = 0 on the surface of the body. z 

(20) 

u~. 



Let us put 

z   z (5.01) 

where H is the amplitude of the incident wave at Infinity. 

The function <t>* must satisfy the equation 

Bf* * + 21k *L* s o 
3z^      dx 

and the boundary condition 

* *ss 0 on the surface of the body. 

(5.02) 

C5.03) 

The condition at infinity wil3 be the same as the condition 

for ¥*. 

We assume that <t * iepends on the same variables \,  £ as 

¥ * and make the substitution 

IPX  + K?3/?) 
** ss e U (5.04) 

Since *• satisfies the same equation as 1* ,  the equation 
for U coincides with equation (4.18) for V. For the determina- 

tion of U we obtain, therefore, the equation 

the boundary condition 

ÄT + 1|2 +cu 
34 

o , 

U BO   for C «- 0 , 

and the condition at infinity 

tec - i(43/3) 
U ~e 'T* 

where Ü* corresponds to the reflected wave. 

(21) 

(5,05) 

(5.06) 

(5.07) 
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If we assume for U an expression of the form (4.36), the 

function f(t) therein will be determined from equation (5.06) 

and we obtain 

U- 
w (t) 

(t-0 - -s_ 
w1(t) 

w1(t-C) 1 dt .  (5.08) 

Inserting (5.08) and (5.04) into (5.01) we obtain the solution 

of our problem for the particular case H°s0. 

Consider now the general case. The boundary condition on 

the surface has the form 

Hz = - (bx + cy) Hy , 

where H is known. Using the identity 

2 
bx + cy K — (ax + by) + ac "   y , a a 

we can write instead of (5.O9) 

Hz=-| (ax + by) Hy-52^bf yHy . 

(5.09) 

(5.10) 

(5.11) 

But, in virtue of the boundary condition (3.13),  for H we 

have on the surface 

3H_ 
(ax + by) H   m 1 £L y     k DZ r^p   y 

Inserting this value into  (5.11) we get 

(5.12) 

H. 
a  \k   bz HP  y 

ac - b yHy . (5.13) 

(22) 

L - 



'    s 

119 

This equality is certainly valid on the surface 01* the 

body. But owinS to the f&ct that the derivatives with respect 

to y &re not involved in equation (4.02), the right-hand side 

of (5'1?)  [unlike that of (5.11)] satisfies also the approxi- 

mate wave equation in space. Therefore, the value of K2 in 

space can differ from the value of the right-hand side (5.13) 

only by a quantity which is a solution of the approximate wave 

eouation and which vanishes on the surface. But a auantity 
ikx 

having all these properties is either the function e .  0 

or any function proportional to it (where the proportionality 

factor can depend on y). 

The above considerations permit us to determine the" com- 

plete expression for H in a simple way. We rewrite equation 

(5.13) inserting for H the expression (4.01). We get 

__  1 „o ikx 
- - i h  e Mr-"] + - b' 

a ;T.V ¥ • 

(5.14) 

If we add to the right-hand side of (5.1*0 terms propcrt- 
ikx 

lonal to e   * * and vanishing on the surface, we can also 

write 

K_ = - 1 H°y  e
lkx « 

ac 

m 

b2 

my (¥ * - 0 *5 

c * * 

o£ 
+ q ('•*•- <?*) 

„o , ikx 
fi2 6    a'* . 

(5.15) 

We shall now show that this expression is valid not only 

on the surface hut also in space (within the whole region con- 

sidered) . It is obvious that it satisfies the approximate wave 

equation and the boundary conditions. It remains only to show 

that it satisfies also the condition at infinity. This becomes 

(25) S2.*!?0!1"t0 Dnc doM ** Penrut fully legible «production 

#-■ 
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evident if we note that in the derivative 3**/dC and also in 

the difference *♦,- ♦•the amplitude of the term corresponding 
to the Incident wave vanishes. Hence at infinity only the 

term proportional to H° will correspond to the incident wave, 

and this term has a correct amplitude. 

We have obtained the components Hy and Hz« The remaining 

components can be determined from the simplified Maxwell equa- 

tions (2.17). Omitting small terms we obtain 

E. i „0 ikx BIT* 

i V  ST ' 3C 
(5.16) 

H. i „0 ikx a*«* — n_ e     m  z     3c 
(5.17) 

The determination of the field components is now complete. 

6.  THE FIELD IN THE ILLUMINATEr REGION 

In order to investigate the field in the illuminated region 

we have to deduce for the functions U and V given by (5.08) and 

(4.39) asymptotic expressions, valid for large negative values 

of e. 

We put according to (4.21) 

Then we have 

* - u -1 e3 . 

U »e10 - U*, 

V.e1* - V*, 

(6.01) 

(6.02) 

(6.05) 

(24) 
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u* = 
2 JTT 

Ut w„(t) 
wflty *i (* " 0 «t , 

v*= —?= I 
2j7r  q) 

i«t w'(t) - qw (t) 
e   _f _ w1(t - C) dt . 

w{(t) - qw1(t) 

(6.04) 

(6.05) »■* 

The phase of the integrands in U* and V * is equal to the 

expression 

which was considered above I formula (4.22)1 . 

In the point of the extremum of the phase we have 

(6.06) 

t*fö-i?, 

(6.07) 

(6.08) 

where we put for brevity 

4t2 + 3C * (6.09) 

the root being taken positive. . 

The extremum value of the phase is equal to 

<t* = jft    (4ö3 - ?ö2£ - 2£3J . (6.10) 

In the following we shall always use the symbol 0* to 

denote this extremum value. Applying the method of stationary 

phase we deduce for U* the asymptotic expression 

(25) 
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U^-e1** 
(6.11) 

The integrand In V dlffers from  tnat 

vary ng factor, which 1. for large negative valuea of t appro» 
mately equal to «^proxi- 

(Wl / Wlj 

- q 

- q 

q - i J - t 

q + i F~* ' (6.12) 

of u .Threfre the a8ymptotlc value of V    win differ from that of U •   by the factor (6 12}  feal^n ir> +u~ 
we have 

lD,-L2;  taken ln the extr-emum point.    Hence 

V» Äe 
,AV q - 4 (g - CQ 

q +5 (e - 2?) (6.13) 

Let us elucidate the geometrical meaning of the formulas 
obtained. 

We consider the ray, which goes after reflection through 
the point '■r%y,Zi    Determining the coordinates x ,y of the point 

of the surface, where the reflection took place, we obtain the 

following approximate formulas, valid for gliding incidence 

X - 8 

where 

5am ' 

(6.14) 

(6.15) 

Geometrically s is the length of the path, traversed by 

the ray after reflection. The cosine of the incidence angle 
is equal to 

(26) 
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«The exact value of the difference x - x + s is 

X„ - X + S a 2S COS 0 . 0 (6.17) 

The phase difference of the reflected and the incident wave 

is proportional to this quantity. We have 

0* - 0 » k(x ~ x + s) » 2 ks cos 0 . (6.18) 

Inserting in (6.18) the values of s and of cos 0 from 

(6.15) and (6.16) and using (4.11) we obtain 

I*  - 0 = fy (ß + i)   (C - 2i)2   . (6.19) 

It is easy to verify that (6.19) is equal to the differ- 

ence of the quantities (6.10) and (6.01). 

Hence the phase difference of the two terms in (6.02) and 

(6.03) is in agreement with the results obtained from geometri- 

cal optics. 

Consider now the amplitude of the reflected wave. 

Inserting (6.11) in (6.02) we shall have 

„ M  - e1** U * e 
N 

1 - 11 
3  56 * 

(6.20) 

Using the expression (4.16) for q and the value (6.16) for 

cos 0 and inserting (6.13) in (6.03) we obtain 

10 
e ^ - e 10 *   I  1 2fe   1 - cos 0 -4 i) 

36 

(27) 

1 + cos e jT * 
(6.21) 
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The function U corresponds to the case when the polariza- 

tion of the incident wave is such that the electrical vector i» 

perpendicular to the plane of incidence. The function V cor- 

responds to the case of an electrical vector parallel to the 

plane of incidence. It is easy to see that in both cases our 

formulas give the correct values of the Presnel coefficients. 

7. CONCLUSION 

The formulas obtained above give immediately the field 

in the vicinity of any point situated on the surface of a con- 

ducting body on the boundary of the geometrical shadow. Since 

this point may be chosen in an arbitrary way, our formulas give 

also the field in a certain ring-shaped region, adjacent to 

the closed line, which represents the boundary of the geo- 

metrical shadow on the surface (penumbra region). Consider 

now the field outside this region, but still near the surface 

(at distances from the surface, that are small as compared with 

its curvature radius). In the shaded part of this spatial 

region we may put the field amplitude equal to zero. Indeed 

the obtained solution decreases exponentially as the distance 
from the shadow boundary increases, and if the quantity 

§ + -4c Is positive and large, this solution can be considered 

practically to be zero. We thus obtain a continuous transition 

to complete shadow. Let ua now consider the illuminated region. 

In % 6 we have seen that In the remote part of the illuminated 
region our formulas give a field which coincides with that 

obtained from the Presnel formulas. Hence it follows that if 

we use our formulas in the penumbra region and calculate the 

field with the help of Fresnel's formulas in the illuminated 

one, we shall obtain a continuous transition from penumbra to 
light. 

(28) 



In this way our formulas permit us to determine the field 

and near the whole surface of the body (within a certain 

layer). Particularly, they give the current distribution, 

induced by an incident plane wave on the surface of the body. 

gut if the current distribution is known, the field of the 

scattered wave can be determined in the whole space (also at 

large distances from the body) by applying well-known formulas 

for the vector-potential due to given currents. 

As a final result cur formulas give thus a complete 

(though approximate) solution of the problem of diffraction 

of a plane wave by a conducting convex body of arbitrary shape, 
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VI.  PROPAGATION OP THE DIRECT WAVE AROUND THE 

EARTH WITH DUE ACCOUNT FOR DIFFRACTION AND REFRACTION 

V. A. Fock 

Introduction 

Having assumed the homogeneity of the earth's surface, 

the propagation of the radio waves around the earth is con- 

ditioned basically by the following three considerations: 

diffraction around the convex surface of the earth, refrac- 

tion in the lower layers of the atmosphere, and reflection 

from the ionosphere. At short distances, of the order of a 

hundred or several hundred kilometers, the reflection from 

ionosphere plays no role. But at distances of the order of 

a thouLind or several thousand kilometers the reflection from 

the ionosphere begins to play a substantial role, because the 

direct wave begins to have added to it the reflected waves 

which have substantially greater Intensity than the direct 

wave. 

However, even at these great distances it is possible, 

under certain conditions, to separate the direct wave and to 

observe it Independently. Its study is of important practical 

Interest for the interference methods of determining distances 

For this reason the development of a theory which would give 

the amplitude and phase of the direct wave up to the ultimate 

distances, presents a very important problem for practical 

purposes. 
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The theory of direct wave must take account of both the 

diffraction and the refraction. Nevertheless, in view of the 

complexity of the task, In the majority of the theoretical 

investigations the atmospheric refraction either is not taken 

into the account at all or Is treated very crudely, using 

methods of geometrical optics. The extremely important concept 

of the equivalent radius of the earth has not received adequate 
theoretical foundation in this case. The concept has been 

Introduced on the basis of considerations of bent rays, and 

yet, in the region of the penumbra and particularly in the 

region of the umbra, the concept of ray as such loses its 

significance. In connection with this, those conditions 

under which the replacement of the earth's radius by the 

equivalent radius is permissible have not been made clear. 

In this paper we shall give an approximate solution 

of the Maxwell's equations for the Hertzian vector which will 

take account of both the diffraction and the refraction. This 

solution is valid for very general assumptions regarding the 
variations of the index of refraction with height. 

In certain practically important cases this solution 

may be expressed by functions introduced by us in our solution 

of the problem of propagation of radio waves in homogeneous 

atmosphere. These functions are partially tabulated; in 

those cases where there are tables the computation of the 

field with due account for refraction presents little work. 

Incidentally, we shall give the basis for the concept of the 

equivalent radius of the earth and shall show that this con- 

cept is applicable in the region of the umbra and penumbra 

(where the geometrical optics are not applicable) and shall 

make clear the conditions when the employment of the concept 

of an equivalent radius of the earth Is permissible. 

(2) 
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I. Differential Equations and The Boundary 

Conditions of The Problem 

Let us designate by r, 6,  'and $ the spherical coordinates 

„•tth the origin at the center of the earths sphere and with 

the polar axis passing through the transmitting dipole. We 

ghill assume the dipole to be located on the surface of the 

earth and we shall 3tudy the field in the air. The radius of 

the earth we shall designate by a. The dielectric constant of 

the air we shall assume to be a function of height h « r - a 

above the surface of the earth. 

e = 6(h),  h » r - a (1.01) 

As in the case of the homogeneous atmosphere, the com- 

ponent fields in the air may be expressed by Hertzian function 

I*. We have: 

E    -        -1    •       d     ( «in e 5u 
v      r sin 6    b9    \ ae 

6         er    dr    \     d9> ). 

H .   =  -  ik     € 2?. 

)• 
(i.O?) 

(1.03) 

!\   .'•Ul^ 

whereas the remaining component fields are equal to zero. 

The time dependence of the field we express by e"   where 

o 

Here X is the wave length in free space (in our problem 

it is necessary to distinguish it from that in the air). Ihe 

value of the dielectric constant of the air at the surface of 

the earth we shall denote by eQ - e(o), and we shall denote by 

(3) Qgpj available to DTIC does not 
pennä fully legible iepioductioa 

*.« 
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*■$■«■ o J€o (1.06) 

the wave number evaluated at the surface of the earth. 

The field, expressed by the formulas (1.02) and (1.04) 

will satisfy Maxwell's equations if the function U satisfies 
the equation 

Br (l|:(€ru))   +-±~± (*meM\ x c ör y        r sin e d©   V ^eJ ^r J *» «in 9 d© 

Let us introduce a new function 

+ kj erU = 0 . 

(1.07) 

ul = €r Jsln 0 u 

This function must satisfy the equation: 
Mt 

(1.08) 

+ ko Ul = 0 . 

The field at the surface of the earth must satisfy 

(1.09) 

Leontovich's conditions 

where 

B°--j¥ H*- (i.io) 

TJ   =   €g   +  i    (4TT/ü>)V2 (1.11) 

is the complex dielectric constant of the soil. Leontovich's 

condition will be satisfied if the function U, satisfies the 
condition 

^Ul    ik«€« . £ -   __ O 0 
Br 

U, 

Vr   ' (at r : a) . (1.12) 

(*> 
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In the function U, let us separate out a rapidly varying 

factor by assuming 

Ux = elkae U2 = e
lks U2 , 

«r.ere K has the significance (1.06) and s * a6 is the length 

0f the arc along the earth's surface from the point where the 

dlpole is located to the point where the field is being computed. 

For function U2 we obtain the equation 

B2U, 

Br2     a Be 

e' 
€ 

'Bu, 

BT 
1 
7 

32U, 

3s5" A + —V-") 
ü- \4  r sin* ej     c (1.1*) 

where €' denotes the derivative of e(h)=€(r-a) with respect to r. 

The equation (1.14) is so written that the left-hand 

portion contains the most important terms w'.iiie the right 

hand side contains corrective terms, which, as we shall show, 

may be replaced by zero. 

Upon evaluating the order of magnitude of the resultant 

we may take advantage of the results obtained for the case of 

homogeneous atmosphere. If we introduce the large parameter 

3! 
m - 

Then 
dU 

Br 
2 = 0 (= "M2 ■ • (?'.) 

(1.15) 

(1.16) 

where the symbol 0 stands for "of the order of". 

(5) 



On the other hand, If we exclude from our considerations 
the ionosphere (where € may become zero) then the .gradient 

of the logarithm of e will be of the order of the curvature 
of the earth's surface so tha~ 

f=o(i). (1.17) 
Prom this it is seen that separate terms of the left side of 

2 
(1.14) will be of the order not less than ^    Up , while on 

m 
the right side the terms containing the derivatives, will be 

k 2 of the order -r Ü.. As regards the terms containing sin 0 
m   d 

in the denominator then under condition 

ks » m (1.18) 

these terms likewise will be small. In this way, by dropping 

the magnitude of the order -=* as compared with unity, we shall 
m 

be able to substitute zero for the right side of equation (1.14) 
after which we shall obtain 

&!. 

dr2 
- , 21 * 

dU, 
t 

de *(k-$> U2 = 0 (1.19) 

This is a parabolic equation of our problem which resembles 

in form the Schroedinger equation of the quantum mechanics. 

We can make further simplification in this equation by 
making use of the approximate equality 

1 -<. 2± (1.20) 

Introducing, in addition to that, in place of the angle 9 the 

length of the arc s a a0 and regarding s and h as independent 
variables, we arrive at 

+ 2ik ^2   2 f * '  €n  2h\ 
(1.21) 

(6) 
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'K€  boundary condition for TJ« at the surface of the earth will 

^c the same as for U,, namely 

Oh 
Ik U_  (at h = 0) . (1.22) 

The condition at infinity* (h—»oc) maybe obtained from 

consideration of the phase of the Hertzian function. If we 

let 

U - | XJ | e10    U2 = |ü2|e
1(* " ks> ,     (1.23) 

Then, since we are considering the wave coming from the source, 

the phase of 0 must increase with increase in height h. -From 

this we obtain the condition 

3-h 
(1.24) 

*» 

'Footnote: 

J. 

We are taking an opportunity to correct an inaccuracy 

permitted in the discussion of the conditions at infinity 
p 

in the article by M. A. Leontovich and V. A. Fock.  In this 

article during the solution of the problem for spherical earth 

there was set a requirement that not only the Hertzian function 

but also all separate items of the series representing it 

(independent partial solutions) remained finite with unlimited 

increase of the variable (proportional to the height h). 

Actually this requirement is not met. Nevertheless, the 

partial solutions were selected correctly and all of the 

remaining results of above article are also correct. The 

reasons given for the selection of the partial solutions 

must be replaced by the condition for the phose, analogous 

to our condition ^£ > 0. Instead of that it was also per- 

i... ,.,;.;ible to require exponential attenuation of the wave In 

the presence of unlimited increase of the variable x, pro- 

portional to the horizontal distance s. 

(?) 



which must be fulfilled, at least for sufficiently large values 
of h. 

In addition to the above requirements, the Hertzian func- 

tion U, and also function U« must remain finite and continuous 

throughout the entire space with the exception of the region 

immediately adjacent to the source. 

For a singular solution to the equation (1.21) it remains 

£or  us to formulate a condition which must be satisfied by 

function Ug in the region immediate to the source. First, it 

is apparent that in the immediate neighborhood of the source 

equation (1.18) is invalid, and equation (1.21) itself is no 

longer correct. For this reason the region must, nevertheless, 

remain in the "wave zone". For example, we may take a region 

where a "reflection formula" applies, and obtain the desired 

condition by demanding that the sought solution in this region 

be in conformity with a reflection formula. 

The reflection formula has the form 

ikR 
U = i~  (1 + f) , (1.25) 

where f is the Fresnel coefficient. Because we are making use 

of the boundary conditions of Leontovich (1.10) we thereby 

assume that|rj|>> 1. If we, in addition, will assume that 

h << s, i.e., consider low angles of ray above the earth's 

surface, then we can assume 

P. = s + Ü- 2LÜL (1.26) 
2s        h JT + s 

Substituting these expressions in (1.25), we come to the con- 

clusion that in the region where the "reflection formula" is 

applicable the function 

U2 = e-
iks €r Jsin 6   U 

(8) 

(1.27) 



puSt be transformed into the form 

U2 = 
- €o J^  2h K khc 

2T~ 

JT   hJV 
(1.28) 

+ s 
i 

Automatically, this condition is equivalent to the requirement 

that when s—*0  and h > 0 the function U2 has a property 

characterized bj the condition 

kh2 

in.  ( U, 
-»0  V < 

2€, 
lin 
s 

-F 2s 

F ) 

(1.29) 
0 

More detailed basis for the condition (1.29) may be 
' 2 

found in the referenced work by M. Leontovich and V. Fock. 

Let us note that in place of conditions (1.29) and (1.28) 

we could have set up still a more stringent condition, requiring 

that in that region where the influence of the curvature of 

the earth's surface and of the nonhomogeneity of the atmsophere 

already ceases and where the formula of Weyl-van der Pol is 

applicable*, our solution should pass into the solution by 

Weyl van der Pol. 

2. Transfer to Dimensionless Quantities 

** 

The differential equation for function Ug, derived by 

us, takes the form: 

d2U0 dU0 
—J- + 21k —£ 
dh^      ds ^(^♦•K-- (2.01) 

Let us consider the coefficient of Ug in this equation. Having 

denoted by €' the value of the gradient of the dielectric 

#Footnote: 

The range of application of the formula Weyl-van der Pol 

was investigated in detail in our work. 

(9) 



constant near the surface oi" the earth, we can separate out 

of the expression for e the linear term and express the co- 

efficient of U2 in the form 

** (' 

2h\ . 

V 
e - € - € 

1 S '  V 

h 

Now let 

1 - 1 , 
a* " ä + 

o 
2TT 

(2.02) 

(2.05) 

The quantity (2.03) is the difference between the curvature 

of the earth's surface and the curvature of the ray, while 

the quantity a is commonly designated as the equivalent 

radius of the earth. Adopting the nomenclature of (2.0?) 

we can write the formula (2.02) in the form 

(^*f)- _ 2k' if* h (1 + g) 

where: 

6--a 
26 (^ ■ 0 

(2.04) 

(2.05) 

As can be seen from (2.05) the quantity g is expressed 

in dimensionless units and depends upon the average gradient 

(averaged along the height) of the dielectric constant of the 

air  and the value of the gradient at the earth's surface. 

In the case of normal atmosphere the magnitude g is positive 

but in case of temperature inversion it may,become negative 

and then only starting with a certain height will again 

become positive. The absolute magnitude of g is usually not 
greater than 0.2 or 0.3. With h-»oo the theoretical 

*# Footnote: 

Calculated from the surface of the earth to the given 
height. 

(10) 
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fignificance of g becomes 
a " a and with h = 0 will be g = 0. 

jn the case of normal atmosphere the quantity g changes very 
elowly, but in case of inversion its change takes place con- 
aiderably faster. 

Substituting expression (2.04) in the differential equa- 

tion (2.01) we obtain 

d%     dU0  2k' 

as a 
h (1 + g) U2 = 0 . (2.06) 

For investigation of equation (2.06) it is convenient 
to change from h and s to dimensionless quantities. For this 
purpose we shall introduce vertical and horizontal scales. 

2 
hl = 

a 
2k* 

81 " 
3 2a' ,*2 (2.07) 

and we denote 

h - V 
h^ " y ' i = x (2.08) 

In order to simplify the condition (1.29), we will also change 
to a new dimensionless function W,, assuming 

.«„4=" 
u2 " rsy w 1 • 

In addition to that let 

q = ikh. _£ - i ka 
2 

__o 

(2.09) 

(2.10) 

. Using the new notation, the differential equation, the 
boundary condition, and the condition determining singularity 
are written 

(11) 
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32w öW 
gl + i —I + y (1 + g) Wx = 0 , 

—=■ + qWn = 0  (with y = 0) 
dy 

11m 
x-*0 (■■■ jr 

}h 
)■ 

0 (y > 0) 

(2.11) 

(2.12) 

(2.13) 

In addition to that, there remains in force the condition for 

phase of <f>  = ks + arg W, , namely 

30 

dy 
(with y » 1) (2.1*) 

The quantity g entering in the equation (2.11) was 

determined above [formula (2.05)J as a function of height h. 

Denote by h some height characterizing the rate of change 

of the gradient of the dielectric constant of the air, e.g., 

that height interval within which the gradient changes by 

e = 2.718 times.  (For normal atmosphere h "  7*00M; in other 

cases it is possible only to denote the order of magnitude of 

hQ which is all that we need.) The quantity g we may regard 

as a function of the ratio h/h . 

g s g(h/h0) > g(0) = 0 , (2.15) 

considering that the derivative of this function relative 

to its "argument" will be of the order of unity. With the 

transfer to the dimensionless quantities (2.08), we must regard 

g as a function of y. Since h * l^y, we shall have 

g * g(ßy) 

(12) 

(2.16) 
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_hl . ß = K = K 2k' 
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(2.17) 

In the future we shall regard the parameter ß as a small 

quantity. In order to evaluate its order of magnitude assume 

f, = 7400M (normal atmosphere) and replace the equivalent 

radius a* by the geometrical radius a. Then for X - 1 M, 

X ■ 100 M, and \  - 1000 M there shall be obtained correspond- 

ingly ß » 0.006, ß = 0.05>7, ß -  O.IJ, ß = 0.58. In case of 

inversion, the magnitude of h will be significantly less and 

the parameter ß will become small only for proportionately 

shorter wavelengths. 

3. Solution of Equations 

If in the equation 

B2W,    3w r       -. 
_± + i __± + y [14. g(ßy)J Wx = 0 

V dx 
(3.01) 

we assume ß = 0, because g(0) -  0, the function g .will like- 

wise become equal to zero, and the equation will uecume the 

same as that which was discussed and solved ^together with 

the boundary conditions (2.12) and (2.13)J in our previous 

work devoted to the investigation of the case of homogeneous 

atmosphere. However, it is important to note that the condi- 

tion ß ■ 0 corresponds not to the assumption of the homogeneity 
of the atmosphere, but to the more general assumption of con- 

stancy of gradient of the dielectric constant. The formulas 

obtained are the same as in the case of homogeneous atmosphere 

with the exceptions that in the expressions for x, y, and q 

in place of the radius of the earth a, there is involved the 

equivalent radius a*. In this way, the smallness of the 

magnitude ß determines the degree of exactness with which it 

(13) *r 
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is possible tc employ (for finite values of y) the concept of 

the equivalent radius. 

The solution for ß - 0 was obtained by us in the form of 

an integral containing the complex Airy function. The latter 

is that solution of the differential equation 

w"(t) = tw(t) . (3.02) 

which has, for large negative values of t, the asyrr^otlc 

expression 
7T 

w(t) (- t) 
(- t) 

3/2 

(3.03) 

The solution for g(ßy) ■ 0 has the form 

-i TX 

W, = e 1 I 0ixt  w'(t -  y) A+ e   w»(tj - qwft) dt (3.04) 

where the contour ranges from t = i co to t "  0 and from t "  0 
I«        _ 

to t » ooe  (0 < a < ■?)  enclosing all oi'  the roots of the 

denominator of the function under the integral.  (This contour 

can, of course, be replaced by some other equivalent contour.) 

This solution coincides with that which was obtained earlier 

in our first paper. 
an 

Using^analogous method we shall attempt to find a solu- 

tion for our equations for the general case of ß / 0. At 

the same time we shall not make the assumption that ß is small 

and only later, with the aim of simplifying the obtained general 

solution, will we make use of & restriction regarding the small- 

ness of ß. 

The equation (3.01) permits separation of the variables. 

Partial solutions of the equation (3.10) having the form of 

a function of x multiplying a function of y containing an 

arbitrary parameter t, will be written as 

(14) 

±-U- 



Wx = elxt f(y, t) 

«here f(y>  t) satisfies the equation 

,2 
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(3.05) 

t + yg. (»)] f = o (3.06) 

prom the theory of differential equations it is known that 

If the initial value (i.e. its value with y ■ 0) of the 
function f and its derivative with respect to y are entire 

functions of the parameter t, then the integral of the equa- 

tion (3.06) will be an entire transcendental function of t. 

We shall designate by f(y, t) that Integral of the equation 

(J.06) which is an entire transcendental function of t and 

permits, for large values of the difference y - t (or its 

real part), the asymptotic representation 

7T y 

f(y. t) = j 
Jy - t + yg(ßy) 

exp i   Ju - t + ug(ßu) du 

(3.07) 

The lower limit of T in the integral which appears in 

the exponential may be taken arbitrarily. The coefficient 0 
j 7T 

may be a function of parameter t. The phase factor e   is 

added in order that, with g = 0 and T * t, the expression 

(3.07) will transform into the asymptotic expression for the 

function 

f(y, t) = Cw(t - y) (3.08) 

The expression (3.07) was taken in accordance with the 

requirement «* > 0, imposed on the phase. 

Designating by f(y, t) the integral of equation (3.06) 

Just determined, we shall consider the expression 

*« 

(15) 
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- e -F ; 

>ixt  f(y, t) 

ÖM 
dt 

y = o 

(3.09) 

Where the contour r has the form analogous to contour C in 

the integral (3.04). 

First, let us note that the function under the integral 

is uniquely determined by the conditions laid down previously, 

because the factor C which remained unevaluated in (3.07) has 

been eliminated. 

Further, the function under the integral in (3.09) repre- 

sents a meromorphic function of the complex variable t; the 

only singular points in it are the roots of the denominator. 

Investigation of the roots of the denominator in (3.09) 

is difficult to carry out with full rigor. For such investiga- 

tion it is necessary to know the behavior of the function g(ßy) 

with complex values of y in the vicinity of arg y » 5 . However,^ 

on the basis of certain not fully rigorous considerations which I 

we shall not cite here, it can be expected that if the function > 

g(ßy) will remain small in the indicated complex region (e.g., 

/g/ < £)>  then the roots will be located in the same way as in 

the case g = 0, i.e., in the first quadrant of the plane t in   \ 

the vicinity of arg t = ■£ . In any case it will be so for 

small values of parameter ß. 

It is also necessary for us to know the behavior of the 

function f(y, t) for positive values of t - y (and also in the 

certain sector of the t-plane including the positive real axis). 

The desired asymptotic expression will be obtained by the 

analytical continuation of expression (3.07) through the third 

and fourth quadrants of the plane t, because in the first are 

located the roots of f(y, t). It will have the form 

(16) i 
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4 
l|t - y - yg (ßy) 

exp 

T 

Jt - u - ug (ßu) du 

(3.10) 

If we assume here that g = 0 and take T - t, then this 

expression will lead, as did (3.07), to the asymptotic expres- 

sion for the function (3.08). 

Knowing the location of the roots and the behavior of the 

function under the integral on both sides of the region where 

the roots are located, it is then possible to take in the 

integral (3.09) the contour r in such a way that it includes 

all the roots of the denominator and goes away with branches 

to infinity. For the initial branch of the contour (disappear- 

ing into infinity) will hold correctly the asymptotic relation 

(3.07) and for the terminal branch (disappearing into infinity)- 

the expression (3.10). At the same time the integral taken 

along this contour will be converging. 

The preceding discussion had the purpose to show that the 

expression (3-09) for the function W, has a definite mathematical 

significance. 

Let us show now that it satisfies all conditions which 

have been laid down. First, it is clear that it satisfies 

the differential equation (3.01) because it is satisfied by 

the function under the integral. Further, it satisfies the 

boundary condition (2.12). 

—i + qW, = 0    with y = 0        (3-11) 
By 

In fact, by differentiating in (3.09) under the sign of 

the integral and then assuming y ■ 0, we shall see that the 

numerator of the fraction will cancel with the denominator 

and the function under the integral will be holomorphic, for 

(17) 
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which reason the Integral will become equal to zero. Then th» ; 

integral will become converging and, therefore, finite for  '< 

all positive values of x and y. It is not difficult to verifw 

that it will satisfy the condition for the phase ( §« > 0J . 

It remains for us to check whether the expression (3.09) 

has the singularity near x « 0, which is required by the 

condition (2.13), or, what is equivalent, to verify whether 

at short distances from the source it gives the Weyl van der Poj 

formula or the reflection formula. 

With the aid of the asymptotic expression (3.07) and (3.10) 

for f(y, t), it is possible to show that if x and y are small, 

and the relation ^ is large, then the principal portion of the 

integration will lie ir the region of large negative values of 

t.  (The earlier contour can be deformed so that it passes 

through this region.) Making use of the expression (3.07), 

we obtain for large negative values of t: 

ilXa  t) a 

f(0, t)  M 

Prom this 

-t 
y - t + yg (ßy) 

exp Yt* t + ug du 

(3.IS) 

] 

X /y « 0 

(3.13) 

(3.14) 

But when y is small the term yg(ßy) is small compared with y 

and we can write in place of (3.12) 

y 

t" du 1.(3.15) til*   fc) s 
f(0, t) 

exp 
y - t 

|\ |jrrr auj, 

(18) 
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,s n0te now that the same asymptotic expressions will be 

ruined for the same region if in place of f (y, t) we 

-uWtltute 

f(y, t) = w(t - y) . (3.16) 

tut after such substitution the integral (3.09) will transform 

Xr.to (3'0i0 and the latter gives, for small values of x, y 

the Weyl-van der Pol formula, the reflection formula, and the 

boundary condition (2.13). 

We can also verify this more directly. Introducing the 

variable of integration p sJ - t and neglecting the quantities 

y and y as compared with p we find that 

f(y, - P^) 

f(o, - p2) 
4iyp 

and 

(**♦«) 
=  ip + q 

(3.17) 

(3.18) 
y ■ 0 

Substitution of these quantities in the Integral   (3.09)  gives 

W, 
i 42      f> 

4 r=  I 
,-i(xp - yp) Pdp 

p - iq (3.19) 

where the contour r« intersects the positive real axis in the 

plane of p from below upwards (in the vicinity of point p = -^ 

If we should compute the integral (3.19) without neglecting 

anything, we shall arrive at the Weyl-van der Pol formula. If 

we compute it by the method of stationary phace we arrive at 

the reflection formula. If we neglect the quantity | q| in 

comparison with ■£-  , we obtain an expression which will reduce 

to zero the left side of (2.13) even before taking the limit. 

By this it is proved that the expression (3.19) for W, 

represents the desired solution of our problem. 

(19) 
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4. Investigation of The Solution for The Region of Direct 

Visibility «J-rect 

Instead of function WJt it is more convenient to consider 
another function distinguished from W, by a factor IT  We 
shall let x * 

r(x,  y, a)  = e1 *" IT  f elxt   till  t) 

r     (<5y + **)o 

dt . (4.01) 

Remembering the connections between the functions U, U,, 
U2, and W^, given by the formulas (1.08), (1.13), and (2.09), 
and neglecting the distinction between r and a and between 

e and €Q when these quantities enter in the role of factors 
for U we can write 

U = 

J 
eiks 

V(x, y, q) , 
as sin — a 

(4.02) 

where s, as before is the horizontal distance, measured along 
the arc of the earth's surface, and x, y, and q, are connected 
with s, h, T) by the relations 

x = #" >     y = yp ,  q m  i s. 2 J n (4.03) 

where 

£1 
2k' 

(4.04) 

If s is small compared with the radius of the earth, then 
instead of sin -| it is permissible to write simply JJ (as it 
is usually written). However, since the formulas remain 

correct up to very great distances where the difference between 
the sine and the arc become significant, we retain sin -| 
under the radical in (4.02). 

(20) 
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The function V(x, y, q) may be called the attenuation 

factor; in those cases where it is permissible to consider 

- s 0 and to make use of the concept of the equivalent radius, 

equation (4.01) for V transforms into 

v(x, y, q) " e ijjfj .ixt   w(t - y) 

w'(t) - qw(t) 
dt (4.05) 

The function (4.05) was investigated in detail in our 

paper and partially tabulated (for q -  0). 

The investigation which follows will in many respects 

parallel the similar investigation in our paper. 

In the present section we shall regard the line-of-sight 

region which corresponds to section VT of our paper. 

Geometrical optics is valid in the line-of-sight region 

remote from the horizon. If we make use of the expression 

(3-12) and introduce the variable of integration p = J - t, 

we shall obtain for V an integral of the form 

-i? iü) (—£ ) \y + p + yg (ßy)/ 

i u 
MR. 

where for brevity we denote 
y 

2 
CD = - XP  + l* + p2 + ug (ßy) du . 

p - iq 

(4.06) 

(4.07) 

(Translator's Note: Do not confuse this use of to for phase 

with the use of co for angular frequency ir; the time dependence 
e-i*t)t 

Computing the integral by the method of stationary phase, 

we find the extremal of the phase 

(21) 
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Translator's Note: Condition that "ooi _ 
3p " 

= 0 in (*.07)J. 

n 
5f 

y 

1 f       du 
cJ Ju + p* + ug (ßu) 

(4.08) 

and after several operations we arrive at the expression 

V = e iü) 
P - lq «** (4.09) 

In this formula p represents a function of x and y 
determined from equation (4.08). For g « 0 and also for 
small values of x and y. 

p = 7 - x , (4.10) 
2x 

and the expression under the sign of the radical in (4.09) 
becomes equal to unity. 

Formula (4.09) is valid also in the case where the 
magnitude of p is large and positive . 

Our formulas permit a simple discussion from the point 
of view of geometrical optics. Actually the complete phase 

0 = ks + a) (4.11) 

of the function "J represents a solution of the eikonal equation 

(4.12) 

which, after neglecting small quantities leads to the follow- 
inq equation for CD: 

f|sA2 + »*>: 2k? h(l + g) ,      (4.13) 
\9h/       ds  a* 

(22) 
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to the right is the quantity (2.04). After transfer to 

variables x and y we obtain from (4.15) 
tu* 

<W || = y +'yg (ßy) (4.U) 

Relationship (4.08) is an equation of the trajectory of 

the ray passing through the origin of the coordinates, and the 

quantity p is the parameter of this trajectory. The geometrical 

»lgnificance of the parameter p is: 

p =  ^§- cos a , (4.15) 

where a is the angle between the ray and the vertical line 

In the vicinity of the source. The complete phase 0 is the 

optical length of the path of the ray, reckoned from the source 

to the point x, y. The quantity 
p - lq 

is equal to 

p - iq 
l + f (4.16) 

where f is Fresnel coefficient. 

Thus, in those cases where geometrical optics is applicable, 

our formulas transform into the formulas of the geometrical 

optics. 

Formula (4.09) is applicable for the ultimate values of 

x and y in that case where parameter p is positive and large. 

If x and y are small the following condition becomes necessary 

£-«£»! (4.17) IX  2s 

If the condition (4.17) is not fulfilled, in the case of 

small values of x and y and large values of p, the expression 

(4.06) remains in force, but the integral must be calculated 

differently, namely a> must be replaced by - xp*" + yp and the 

(23) 
•■- 
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fourth root must be replaced by unity, after whloh the l„t. = 
is reduced to form (,.19) (with a factor J7) and win £** 
Weyl.van der Pol formula. 8 * "» 

o amaif M "0te thSt " X """-F "* lar6e, and the parameter : 

P small compared with these quantities, then the equation 'f I 
the rajectory (4.08) may be solved approximately L p  £ ! 
shall have an approximation i 

i 

y | 
du 

I» : ug (eu) ■ x     (4-18' : 
"■4 

Under the same conditions 

CD 

where 

°>«(y) 

= ®0(y) +jp3 , 

Ju + ug (ßu) du 

(4.19) 

(4.20) 

and the symbol p must be interpreted as an abbreviated designa- 
tion for quantity (4.18). 

J.T-0 equation p = 0 gives the geometrical boundary of  the 
shadow, if  tlia right part (4.18) becomes negative, then the 
equation (4.08) will not have a real answer for p; however, 
function (4.1Ö) fand also (4.10)] retains significance also 
in this case. This apparent discrepancy is explained by the 
fact that the right-hand part of (4.08) is not an analytical 
function of p near the region p - 0. 

The expressions (4.18) and (4.19) will be encountered by 
us in the region of the penumbra where geometrical optics is 
no longer applicable. 

(24) 
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r *veC'-l2ation of Tne Solution for The Region of The Penumbra 
(Finite X and Y) 

The region of the penumbra is characterized by the fact 

t within it the parameter p, determined by the formula 

/; 10) Is either a positive or a negative quantity of the 

order of unity. 

If x and y are finite we may construct a series for V, 
arranged according to poles of the function within the integral 

•ign. 

We shall have 
ao 

V(x, y, q) - e 

7T lxt n 

n = 1 

f(y, tn) 

D(tn)  f(0, tn) 

where 

D(t) * - _J  /Vf , q 3f ^ 
f(0, t)  \9ydt n  dt/v . 0 ' 

(5.01) 

(5.02) 

»« 

and t represents a root of the equation 

'of 

« •") 
- 0 

y = o 

(5.03) 

If ß is not small then the computations using these 
formulas is extremely complicated. For this reason in the 
future we shall limit ourselves to the case of very small 
values of ß. At the same time, however, we shall not con- 
sider as being small the product ßy, but shall also consider 
large values of y (of the order l/ß and larger). 

If ß is small, then in computing the first roots of the 
function (5.03) we can replace g(ßy) by a linear function 

g(ßy) = [ßg'(0)]y - ßoy . 
(25) 

(5.04) 
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The physical significance of the coefficient (3    is 

*o'h   (&) ■ ^r1*' (5.05) 
o     o 

It 

where h, is the scale of height and e is the value of the 

second derivative of e with respect to height at the surface 

of the earth. 

For small values of ßQ and finite values of y and t in 

the role of the solution of the equation (5.06) we can take 

the function 

f(y* t) - w(t - y) - -2 I (3y + 2t) w(t - y) + 
15 L 

+ (5y2 + 4yt + 8t2) w'(t - y)J . (5.06) 

Substituting this expression in (5.03) we find for the 

desired root the approximate expression 

t = t° + ?fi n   n  15 

0 2  3 + 4t° q "1 
(5.07) 

where t is the root of the equation 

a (t°) - qa>(t°) * 0 . (5.08) 

which was investigated in detail in reference [l].    For function 
D(t) there is obtained the expression 

D(t) = (t - q2) (1 - i ßQ t) + | ßQ q (5.09) 

The height coefficients encountered in the formula (5.01) 

f(y, O 
tfy> = ~.  

n 

t(o,  tn) 
(5.10) 

(26) 
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fly ['• fcn + y& (ßy) ] fn 

the initial conditions 

fn(o) ■ 1 and <(0) =  ■ • 1 

may be obtained by numerical integration of the differential 

equation 

(5.11) 

(5.12) 

As long as y is finite (even though x may be very lprge) 

the values of V(x, y, g) obtained in this way will, for small 

values of ß, differ but little from values for ß ■ 0. More 

or less significant difference may appear only in the oo- 
ixt 

efficient e   , giving the attenuation and added phase. 

For this reason it is sufficient to apply the correction to 

these coefficients. 

If no special accuracy is required, it is possible to 

neglect this correction and simply accept that in the case 

under consideration the expression for V(r, y, q) coincides 

with the one derived for the case of homogeneous atmosphere 

(under the condition that the radius of the earth is replaced 

by the equivalent radius). It is then possible to make use 

of all the formulas and tables obtained for that case. 

VT. Investigation of The Solution for The Region of Penumbra 
(Large Values of X and Y) 

The case presenting the greatest, from the practical 

standpoint, interest is the one where x and y are very large 

while the quantity 

p = - (°     3u 2 4 ^~+ ug ^u 
) 

- X (6.01) 

is finite. We already pointed out that the significance of 

p = 0 corresponds to the limit of direct visibility, where 

(27) 
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positive values of p correspond to the region of line of sight 

an the negative values of p to the region beyond the horizon. 

In this case, in computing the integral (4.01) for 

V(x, y, q) it is necessary to keep in mind that the principal 

sector of integration will correspond to the finite values of 

t where y is large. For this reason it is necessary to find 

such analytical expression for f(y, t) which would be valid 

both for very large and for finite values of y - t. This is 

found to be possible for the condition of small value of ß. 

Let us introduce the quantity X, defined by the equation 

' _ (6.02) 
I (- X)V2 * J   Ju-t+ ug (ßu) du 

or 

if'.Jj t - u - ug (ßu) du , (6.03) 

where T is the root of the equation 

T - t + Tg (ßT) = 0 . (6.04) 

For-small values of ßQ and for finite values of y and t. 

.2 ß. 
X = t - y - -2. (5y2 + 4ty + 8t2v 

15 (6.05) 

Then the function 

f(y, t) = - 1 -(x) (6.06) 

will present the solution of the equation (3.06) with an error 

of the order of ß for finite values of x and y of the order of 

(28) 
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I 
?/* , for laige values of y and finite values t. With the aid 

f  the expression (6.05) it is not difficult to prove that in 

xpanding (6.06) according to the powers of ß0 , the terms of 

,vie series up to ß0 inclusive are identical with (5-06). How- 

ever, the expression (6.06) is valid in those cases when (for 

large values of y) the expansion of (5.06) is not applicable. 

If the quantity X is ve^y large and negative (which takes place 

for large values of y) then the expansion (6.06) is transformed 

Into the following: 
7T 

f(y, t) = 
*J y - t yg (ßy) 

exp M^ t + ug (ßu) du 

(6.07) 

■] 
The latter coincide« with (5.07) if, in that equation, 

one makes C ■ 1 and takes for T the root of the equation (6.04) 

In this way, through the use of the formula (6.06) we have 

verified that the same solution of the equation (3-06) will 

have, for finite values of y, the expression (5>06) and for 

large values of y, the expression (6.07). 

We can now in evaluating the integral 

V(x, y, q) = e T Jf   J 
r 

Mt     f(y» t) 

(4+ qf ■i 
dt (6.08) 

make use of both expressions (5.06) and (6.07) at the same 

time, namely, substitute the expression (6.07) in the numerator 

and expression (5.06) in the denominator. At the same time \:a 

can to some extent simplify both expressions. Neglecting minor 

corrections, we shall, in place of (5.06), write simply 

f(y, t) = w(t - y) (6.09) 

(29) 
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and in the formula (6.07) in the coefficient before the 
exponential function we shall neglect the quantity t as 

compared with y, and replace the exponent by the approximate 
expression 

S ^ t + ug (ßu) du j J u + ug (ßu 

y 
\ du 
J Ju + ug (ßu) 

)    du - -i t 

(6.10) 

Using the notation of (4.18) and (4.20) we can write 

i 5  i«)rty - it(x + p) 
f(y, t) = 2& e 

3y 
(6.11) 

As a result we are replacing the function f(y, t) in the 

denominator by the Airy function, and in the numerator by the 

exponential function. 

Substituting (6.09) and (6.11) in the integral (6.08) we 

will obtain 

io> (y) 
V(x, y, q) = e °[y) 

rs> 
2x 

dy JIT 
,-ipt dt 

i w"(t) - qw(t) 

(6.12) 

The remaining integral can be evaluated by a known function. 
In our work £lj it is denoted by 

V- p. •> ■£ J ,-ipt dt 
w'(t) - qw(t) 

(6.15) 

and investigated in detail. For the cases q ■ 0 and q = J i 
there are tables. 

Pootnc. te: 
The tables for q 0 are published in £3!. 

(30) 
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Formula (6.12) gives the coefficient of attenuation for 

regi°n close to the horizon. . It is interesting to compare 

this formula with the formula (4.09) valid in the region where 

ometrlcal optics are applicable. Making use of (4.19) we 

•hall write the expression (4.09) in the form 

"mJ'n m        ""    " ' (6.14) V = e 2x dp_   2p dy p - iq 

But in our work £lj it was shown that the function (6.13) has, 

for large positive values of p, the asymptotic expression 

2P_ vi<- P. «> ■ P^I5 
\? (6.15) 

In this way our formula (6.12) is transformed in the line-of- 

sight region into the formula of the geometric optir.s. 

For negative values of p the expression for V, (~ p, q) 

may be written in the form 

V,(- p, q) = 12 JT 
•Ipt n 

n 
(tn - q<) w(tn) 

(6.16) 

Where Jpl is large (p < 0) this series is reduced to the 

first term which gives the attenuation of the wave in the 

region of umbra according to the exponential law. 

Function V, (- p, q) was first Introduced in our works 

devoted to the diffraction by a body of arbitrary form. In 

these works there was established a principle of the local 

field in the region of the penumbra and it was shown that 

in that region the field is expressed by the function 

V\(- p, q) having a universal character. 

The comparison of the formulas ($12) and (6.14) allows 

us to say in a certain sense, that the wave reaches the horizon 

with amplitude and phase corresponding to the laws of 

(31) 
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geometrical optics for unlimited mediums and at the horizon 

suffers diffraction according to the law of local field in the 

region of the penumbra. 

This picture is found to be in complete agreement with 

the ideas of L. I. Mandelstam in that in the propagation of 

electromagnetic waves along the surface of the earth the 

properties of the ground are significant not along the 

entire trajectory of the ray, but only In that region 

where there is located on the ground the transmitter and 

the receiver ("line of departure" and "line of arrival" 

area). 

If we accept this picture then the dilution obtained 

in this section may be applied to that case where the 

properties of the earth's surface in different areas are 

not equal, under the condition that in the function 

Vi(- p, q) the complex parameter q corresponds to the 

properties of the ground in that area where the ray touches 

the earth. 
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„VII. 

THEORY OF RADIOWAVE PROPAGATION IN AN INHOMOGENEOUS ATMSOPHERE 

FOR A RAISED SOURCE 

V. A. Fock 

Introduction 

We have developed the theory of radiowave propagation in 

an atmosphere with dielectric constant dependent on height ["lj 

for the case when the source is a vertical electric dipoie 

situated on the earth's surface. On the other hand, we have 

considered [2! the case of a raised source (horizontal and 

vertical electric and magnetic dipoles) assuming a homogeneous 

atmosphere. 

The formulas derived in LlJ for the general case of 

arbitrary behavior of the refraction index, were developed 

there in more detail assuming normal refraction when the 

radiowave propagation has the same qualitative character as 

in a homogeneous atmosphere. The case of super refraction, 

when the lower layer of the atmosphere acquires the character 

of a wave guide, is of independent interest and iwirits speoial 

consideration. In the present work, we consider thii case in 

detail. For its qualitative characteristics, the analogy 

with the unsteady problem in quantum mechanics of the disper- 

sion of a wave packet in a given force field appears to be 

useful: apparently, this analogy has not been observed until 

now. 

The question of radiowave propagation under the conditions 

when the atmsophere acts as a wave guide was also studied by 

(1) 
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F. E, Krasnushkin by applying the normal mode method to planar- 

lavered and spherical-layered media |[2J. However, the interesting 

study of P. E. Krasnushkin has a predominantly qualitative 

character and a number of essential mathematical problems remain 

unexplained; in particular, the question of the spectrum of the 

complex eigenvalues of the "normal waves" and the boundary 

conditions for the corresponding "normal functions". 

In Sec. 1 of the present work the fundamental equations 

and the boundary conditions of the problem are set down. In 

Sec. 2 the approximate form of the equations is considered 

(Leontovich's parabolic equations) with the corresponding 

boundary conditions and the conditions determining the singu- 

larity. In Sec. 3 an analogy is carried out between the 

formulated problem and the unsteady problem of quantum mechanics. 

After transformation to nondimensional quantities (Sec. 4), 

a study is made of the properties of the particular solutions 

of the differential equations (Sec. 5)* from which there is 

then constructed a general solution in the form of a contour 

integral and a series (Sec. 6). The general theory is applied 

then to the case of super refraction (Sec . 7) where an example 

is considered in which the curve of the reduced refraction 

index is assumed to be composed of two rectilinear segments. 

In the last section (Sec. 8) there are derived approximate 

formulas, analogous to the semi-classical quantum mechanics 

formulas, for the determination of the attenuation coefficients 

and the height factors. Questions on numerical computation 

methods are not touched upon in this work. 

Section 1. Fundamental Equations and Limiting Conditions 

Let us denote by r, 9,  <t>,  the spherical coordinates with 

origin at the center of the earth and with the polar axis passing 

through the radiating dlpole. Let U3 denote the earth's radius 

(2) 
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by a, We assume the dlpole to be found at a height h' = b - a 

above the earth's surface so that its coordinates will be 

r ■ b, fl ■ 0. We will consider the dielectric constant of 

the air, €, to be a function af the height h = r - a,  above 

the earth's surface. 

The field in air can be expressed according to the well- 

known formulas through the Debye potentials u, v. 

We have 

1 A*u r 

Ee = 
1 3 (eru)    lto  Sv 
er or 30  + c sin 0 15? 

V- 1   d (cru)  lco dv 
er sin 0 or öd c 30" 

(1.01) 

H_ = 

Hfl = 

H <J> 

-A A*v r 

ioo  c  du 
c sin 0 "5$ 

, 1 *  (rv) 
+ r 75r 50 

icn du 
M + 

1   d2(rv) 
r sin Ö Brof" 

(1.02) 

The same expressions are applicable for the field within the 

earth if we understand by € the complex dielectric constant 

of the earth. The dependence on time is assumed here in the 

form of the factor e 

operator on a sphere: 

-iCDt The symbol A    denotes the Laplace 

Zi u 1      a 

sin 0 TfB fa 9 w) 1      b2 

sln2e c>0 
(1-03) 

(3) 



Kaxweli s «-qj-.ticns will be satisfied if the functions u and v 
satisfy. 

i h    | i f.s; erui i , ti"u , of 
r or \€  dr /   r c' 

A dicruA + A + g? eu B 0 (1.04) 

and 

r dr     r   c 
(1.05) 

The continuity of the tangential components of the field 
will be guaranteed if the quantities 

eru , 1 d(€ru) rv i[rvl (1.06) 
€  dr        dr 

are continuous. 

By means of well-known reasoning, there is obtained the 
approximate form of the boundary conditions (Leontovich con- 

ditions).  If we put k ■ 77 , denote the complex dielectric 
constant of the earth by r\  and keep e for the dielectric 
constant of air, then we will have 

liiiHi = - ik _i_ (eru) 
7>r JT 

(for r a a)   (1.07) 

and 

^iZll  = - ik fT (rv)   (for r = a)   (1,08) 
dr       " 

Later w* sh   C-J.: H  field for which u / 0, v = 0 
"vertically polar'zeer1 ind the field for which u = 0, v / 0 
"horizontally polarized"  In this sense, the field of a 
vertical electric dipole remains vertically polarized in all 
space. The field of a vertical magnetic dipole (horizontal 
frame) has horizontal polarization everywhere. A horizontal 
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electric dipole exoites fields of both forms: both horizontally 

gjjd vertically polarized. In the case of a homogeneous atmos- 

ohere, the vertically polarized field decreases with increasing 

distance more slowly than a horizontally polarized. Consequently, 

the field from a horizontal electric dipole at small distances 

from the source will be predominantly horizontally polarized, 

but at large distances (in the region far beyond the horizon) 

the polarization will be predominantly vertical. 

The vertically polarized field can be expressed through 

the function U (the Hertz function of a vertical electric 

dipole) which has the following properties: U satisfies'-the 

same differential equation (1.04) and the same boundary condi- 

tions (1.07) as u and has, near the source, a singularity of 

the form 
ikR 

U _ e + IT (1 09) 

where U remains finite, and 

R W- b" - 2rb cos 9 k - Ä K  c (1.10) 

Similarly, the horizontally polarized field can be expressed 

through the function W(the Hertz function of a vertical magnetic 

dipole) which satisfies the same differential equation (1.05) 

and the same boundary conditions (1.08) as v and has near the 

source a singularity of the form 

ikR 
W = + W (1-11) 

where W remains finite. 

The fields of the vertical and horizontal electric and 

magnetic dipoles with moment M are expressed through the func- 

tions U and W defined above. 

(5) 



* 

164 

For the vertical electric dipole we put 

u«{Ui v = 0 (1.12) 

For the vertical magnetic dipole (horizontal loop) we have 

u - 0 ; v = | W (1.13) 

For thf- horizontal electric dipole directed along the x axis 

which en^rs into (1.01) and (1.02), the functions u and v are 

detf-rminpd from: 

(1.14) 

A*v --- - lkM -'- sin 0 

where A is the Laplace operator on a sphere (1 03). 

Finally, for the horizontal magnetic dipole directed along 

the x axis we have: 

A*u = - ikM — sin 0 

(1.15) 

de  \db b/ 

Therefore, in all four cases the study of the field reduces to 

the study of the functions U and W, 

Section 2.    Approximate Form of the Equations 

Turning to the approximate form of the equations, let us 

denote by e-, thf value of the dielectric constant of air near 

the source (in practice we can put €, = 1 ) and let us put 

(6) 
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s = ae (2.01) 

such that 3 is the horizontal distance between the source and 

the point of observation, measured along the arc. 

Instead of U and W let us introduce the slowly varying 

functions Ug and Wg by putting 

e eik3 

U =  ] U9 (2.02) 
€r Jsin 0 £ 

and 
Iks 

W =  f     Wp (2.03) 
r J sin 6 d 

As shown in £1J, after neglecting small quantities the 

equation in Ug becomes 

d2Up    3u.  9 
** + 21k —£ + kM e - l + U - 1 + —JUg = 0    (2.04) 

*' 

dh2 dE 

Instead of r and Ö, the quantities h (height) and s (horizontal 

distance) are taken as Independent variables. In our approxima- 

tion, the equation for Wp will have the same form; viz., 

d2W„     dw\ 
2 -•-  2ik —^ + 

dh2      3s 
k2 U - 1  + — J W2 = 0   (2.05) 

We call (2.04) and (2.05) the Leontovich parabolic equations. 

In constructing the boundary conditions on the earth's 

surface (h = 0) we can neglect the difference between the di- 

electric constant in air and unity. 

(7) 
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On the other hand, we can improve these conditions some- 
what by using our results which were obtained by the series 

summation method (see [2] and jj+j). This improvement reduces 
to replacing r\  by TJ + 1 in (1.07), and replacing r\  by r\  - 1 
in (1.08). As a result we obtain 

2 . ik 

3h F + 1 (for h = 0) (2.06) 

md 
oW, 

ih 
2 _ = - ik JTJ - 1 W2 (for h = 0) (2.07) 

Moreover, we should formulate the requirement that, in the 
region near the source where the curvature of the earth's 
surface and of the rays can be neglected, there should be a 
reflecting formula for the earth plane. If the height of 
the source above the earth is h' = b - a then this require- 
ment means that in the aforementioned region there should be: 

'»■JT 
.\2 .\2 i k(h-h')c   i k(h+h')   h + h' -  ■ & 

e   2s    + e   2s    t   Jä-±J 

h + h' + J^TT J 
(2.08) 

and 

W
2-JT 

1 k(h-h'p   , k(h+h'r .  
1  2s  J A Ä   2s    . h + h' - s Jn - 1 - e + e 

h + h' + s JTJ - 1 

(2". 09) 

The factors multiplying the second exponentials are the approxi- 
mate values of the Fresnel coefficients for vertical and horizontal 
polarization. These last two formulas are generalizations of our 
formula (I.28) of [l]. 

(8) 



Let us note that the expressions (2.08) and (2.09) satisfy 
approximately the boundary conditions (2.06) and (2.07). 

In the case of a field above a perfectly conducting sur- 
face (T) ■ oo) the boundary conditions (2.06) and (2.07) become 

3u 
** 0 

and 
w2 * 0 

(for h - 0) 

(for h = 0) 

and the reflection formulas are written as 

U2=J|   [exp^i^J.exp^!^] 

and 

W2 =  jf   [exp [iK iSJga!]  . exp [IK iÖfü!] 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Section 2. Analogy With the Unsteady Problem 
of Quantum Mechanics 

The problem, formulated in the preceding paragraph, of 
wave propagation in a spherical layer with variable refrac- 
tion index is analogous to the quantum-mechanical problem of 
the motion of a wave packet in a given force field. 

Let us write Schroedlnger's equation for the motion of 
a particle of mass in in a force field with the potential 
energy 4>. Denoting the particle coordinate by x, the time 
by t, Planck's constant (divided by 2^0 by "h" we will have: 

*2 .i,    m ^,1,  2m_ 
2-4 + 2i^|f - -£°- *^= 0 (3.01) 

(9) 
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Comparing Schroedinger's equation (3.01) with the Leontovich 

equation (2.04) or (2.05) for Ug and W« we see that these 

equations have identic si form with the coordinate x proportional 
to the height h and the time t proportional to the horizontal 

distance s and the potential energy * proportional to the 

2h negative of e - 1 + j- which differs from the so-called 
reduced  (or modified) refraction index 

M - 10' (T^S)   =  106(n-l+f)       (5-02) 

only by a constant factor. 

Therefore, the Leontovich parabolic equation for the 

amplitude of the steady process coincides with the unsteady 

form of the Schroedinger equation. 

The resemblance between the two problems is not limited 

to the agreement of the differential equations but extends to 

the boundary and "initial" conditions. 

There corresponds to the case, considered in quantum 

mechanics, of the self-conjugate differential equations and 

boundary conditions, the problem in electromagnetics, of the 

absence of absorption in air and on the earth, i.e., the case 

when the refraction index of air is real and the earth is a 

perfect conductor. This case is most interesting for the 

superrefraction problem. Besides, the quantum-mechanical 

methods can be generalized to the case when absorption is 

present. 

If the earth is a perfect conductor, then the boundary 

conditions for Ug and Wg become (2.10) and (2.11) and the 

conditions of the quantum-mechanical problem corresponding 

to them are: 

3* ox (for x = 0) (3.03) 

(10) 



or 

(for x « 0) (3.04) 

As regards the initial conditions, their general form consists 

in assigning the initial value of the wave function 

■■IJ  = tf0(x) (for t=0,0<x<co) (3.05) 

The function f which satisfies the differential equation, 

the initial and boundary conditions can be sought in the form 

oo 

V(x,t) ■I 
F(x,x',t) *0(x') dx< (3.06) 

»« 

For all xl the function P should satisfy the differential 

equation 

m -iri  2m, 

3x'"-    h dt  h* 
(3-07) 

and boundary conditions of the form of (3.03) or (3.04) 

(the same as f). In order that (3.06) should reduce to 

#0(x) at t * 0, P must, as t—»0 have a singularity, the 

character of which is related to the boundary conditions. 

In the case of the condition 

ÖP - 
5x - 

(for x = 0) (3.08) 

the singularity of P must have the form 

imrt(x-x')2] fimjx+x')2!^ 
F(x,x',t)  - e J-sjjjfc \^exp ^ g^ J + exp |- 

im (x+x>)' 

*m— 
(3.09) 

(11) 

Copy available to DTIC doss not 
perait fully legible lepioductioa 

.   . 

I      • 
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In the case of the condition 

P ■ 0    (for x * 0) 

the singularity of P should have the form 

(3.10) 

w 
ft' i j 1 i7T 

£ '■ • i F(x,x',t)  * e     *" 
mo (   I exp 

>^27Tht  \ 

imo(x-x«)
2 

2ht 
- exp [^1) 2tlt 

(3.11) 
Comparing these formulas with (2.12) and (2.13) we see that for 

corresponding boundary conditions, the singularity of P agrees 

exactly with the singularity of U« and W«. Actually, equating 

the height h to the coordinate x we should put 

h = x ; h' * x' : 4 = ££ 
' k  m. (3.12) 

Expressing P through the variables h, h' and s we will have for 

the boundary condition (3.08) 

P = F2(h,h«,s) (3.13) 

where P2 satisfies the same equation as Ug, the boundary condi- 
tion 

I 

3h 

and has the singularity 

- ' 0 (for h = 0) (3.14) 

F2(h,h',s) » e 
-i?r 
—Tp J^  (exp [ü^if]   + exp [a^jf] ) 

For the boundary condition (5.10) we put 

F = G2(h,h«,s) 

(12) 

(3.15) 

(3.16) 



Ji" (exp [M^lifJ  - exp [M^l!]) 

We see that Pg differs from U« only by a constant factor, as 
does Gg from W«, and we have exactly 

i7T 

(3.19) 

k     a 
2lrä   Q2 

If we denote by f(h,s) the function which satisfies the 

same equation and the same boundary conditions as U2 and takes, 

for s = 0, the value 

f(h,s) = fQ(h)    (for 8 = 0) 

then we can write, on the basis of (5.19) 

ao 

(3.21) 

-i7T 

f(h,s) = e . 55 J  Vh'h,'8> fo<h'> dh' (3.22) 

Similarly, if f(h,s) satisfies the same boundary conditions 

as W2 then 

(13) 
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f(h,s) * e k 

oo 

/■ 
j(h,h»,s) fQ(h«) dh< (3.23) 

The last two formulas are correct not only for boundary condi- 

tions corresponding to a perfectly conducting earth (when there I 

is an analogy with quantum mechanics) but even for the more 

general boundary conditions (2.06) and (2.07) where the singu- 

larities of Ug and Wg are then given by (2.08) and (2.09). 

If the function fQ(h) is not zero only in the neighborhood 

of the point h = h1, where the integral of fQ over this region 

is finite, then f(h,z) will be proportional to U„ or W-, 

respectively, for not too small s. Therefore, U« and W„ 

correspond to a point source at the height h', as it should be. 

In quantum-mechanical language, it can be said that the 

function ifi,  proportional to Ug or Wg, is the solution of the 

problem of the dispersion of a wave packet originally concentrated 

in the neighborhood of one point. 
S ~ j 

Prom quantum-mechanics, it is known that the speed of dis- 

persion depends, essentially, on the form of the potential energy.» 

Let us imagine that the particle motion is bounded on one side 

by an impermeable wall. If the potential energy is such that 

the force is always directed out of the wall, then dispersion 

takes place rapidly. If the force holds the particles in some 

region where the potential energy has a minimum, or near the 

wall, then dispersion takes place slowly or not at all. In this 

case the Schroedinger equation admits a solution corresponding 

to the steady or almost-steady state. 

~~ At the initial instant, the wave function of the almost- 

steady state is not zero only in the region of minimum potential 

energy. In the course of time, the amplitude of the wave function 

in this region decreases, and disintegration of the initial 

(1*) 



2;mcst-steady state takes place. The decrease in the amplitude 

occurs exponentially and the rapidity of disintegration is 

characterized by the coefficient in the exponent, which is 

called the disintegration conetant. 

If the Initial wave function itself is not a wave function 

of the almost-steady state, the term corresponding to the almost-' 

steady state can be separated out in its expansion and for large 

values of time this will be the principal term. 

In our electromagnetic problem, the horizontal distance 

s acts the part of the time t of the quantum mechanics problem. 

The decrease in the amplitude of the field with increasing 

horizontal distance corresponds to the dispersion of the wave 

packet, and the earth's surface (h - 0) acts like the wall. 

The wall will be impermeable if the earth is an absolute 

conductor; for finite conductivity, the wall will be absorbent 

and a decrease of the amplitude will take place not only at 

the expense of waves escaping into the upper layers of the 

atmosphere but at the expense of the earth absorbing it. As 

we saw, the part of the potential energy is played by the 

reduced refraction index, M, taken with the opposite sign. 

The behavior of the reduced refraction index depending on 

height is shown in Pig. 1. 

->h 

Figure 1. Dependence of the 
Reduced Refraction Index 
on Height 

(15) 
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The solid curve Is the behavior of M with superrefraction. 

The dotted continuation of the rectilinear part of the curve 

corresponds to the case when there is no 3uperrefraction and   i 

the "equivalent radius1* of the earth can be introduced, which 

is proportional to the angular coefficient of the line relative 
j 

to the M axis. 
i 

If the curve in Pig. 1 is considered as the potential     I 

energy curve, then it will be clear that the presence of the 

maximum for (-M) (minimum for M) which is characteristic for 

superrefraction, is a necessary condition for the existence cf 

an almost-steady state. Actually, if we denote by h^ the 

height corresponding to maximum potential energy, then the 

force in the region h < h^ will be as though squeezing the 

wave packet to the wall and not letting it go into the 

h > hjjj region. 

But in our electromagnetic problem, the presence of an 

almost-steady state denotes such wave propagation in which 

its amplitude decreases with increasing distance abnormally 

slowly, so that its attenuation coefficient (corresponding 

to constant disintegration) is abnormally small. Hence it 

follows that the existence condition of the almost-steady 

state is a condition of the possibility of extra-far propaga- 

tion of radio waves. 

The analogy with quantum mechanics, which was carried out 

here, permits formation of a qualitative picture of the phenomena 

of extra-far radio wave propagation. This analogy is useful, 

so that, certain mathematical methods applicable in quantum 

mechanics can be transferred into the radiophysics domain. 

On the other hand, the methods, developed by us, of solving 

the radiowave propagation problems can be applied in quantum 

mechanics. However, this question is beyond the scope of this 

paper. 

(16) 
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Section k.    Transformation to Nondlmensional Quantities 

Let us return to the solution of the problem formulated 

in Sec. 2. It is necessary to determine lT
2 and VL which 

satisfy the differential equations (2.04) and (2.05), the 

boundary conditions (2.06) and (2.07) and the conditions 

(2.08) and (2.09) characterizing the singularity. This 

problem was solved, earlier, for two cases: a) inhomogeneous 

atmosphere, source on the earth, and b) homogeneous atmosphere, 

raised source. Now we show that this problem can be solved 

for the general caBe of the Inhomogeneous atmosphere and the 

raised source. 

Let us transform, in our equations, to the nondlmensional 

quantities used in our previous work. To do this, let us 

consider the coefficient of U« in (2.04). This coefficient 

is proportional to the quantity 

i-g-i + | « IQ-6 M(h) (*.01) 

where M(h) is the "modified" refraction index. We assume that, 

starting with some height h * H, this quantity can be approxi- 

mated by a linear function of h and we put 

€ - 1 

!•• 
(4.02) 

where a* is the sc-called equivalent radius of the earth and 

a is some small constant (for example, a < 0.0005). In the 

simplest case, it is possible to consider that € s 1 for 

h > H ; then it is necessary to put a « 0 and a «a. 

In that region where (4.02) is correct, the equation for 

Ur, becomes: 

a2u9        ov 
—2 + k2 (2o+2jlW • 0    (K.03) 
0»     \   a / 

(17) 
% -1 
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In order to get rid of the a In the last term, let us make the 

substitution 

U2 * C e
ioks t (4.04) 

where C is a constant which we dispose of later. Then (4.03) 

is reduced to 

5f| + a* 2» + k8 % 1 * 0 
2 

dh ds a 
(4.05) 

Let us introduce the abbreviation 

m 
■(*) 

1 
3 

(4.06) 

and let us put 

ks ■ 2m x ; kh * my ; kh1 * my» 

Then (4.05) can be written 

|!| + i|i + y t = 0 
By    dx 

(4.07) 

(4.08) 

The same substitutions reduce the more exact equation (2.04) 

to the form: 

d2* + i|l+ [y +'r(y)] f = 0 
dy    dx 

(4.09) 

where 

r(y) „* (« . 1 + f . sa - |h)    (4.10) 

The quantity r(y) characterizes the anomalous behavior of the 

refraction index near the earth's surface. Starting with some 

value y, r(y) can be set equal to zero. If we consider that 

a • 0 and a' • a, then simply, 

(18) 
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r(y) - m2(€ - 1) (4.11) 

There remains to express the boundary conditions and the con- 
ditions characterizing the singularity in the new variables. 
Setting 

lm 
Q = JT7T (4.12) 

we will have 

2l + q f * o 
3y 

(for y - 0) J4.13) 

Me chose the constant C in (4.04) so that the equation analogous 
to (5.22) can be written in the form 

7 f(x,y) s I   *(x,y, y) f0(y) dy* (4.14) 

Then the equation defining the singularity of ¥, becomes 

_ e 
■177 

2 Jroc 
«i exp [My-y')2] + exp TitoLll!] yty+ g£as I 

L  4x  J      I      4x  J y + y' - 2iqx I 

(4.15) 

Prom the comparison of (2.08) with (4.15) we obtain 

= J 2?rka 
m exp W (4.16) 

The function Wg differs from Ug only in that the quantity 

1 in the boundary conditions and in the equation 
JTTi 
defining the singularity is replaced by I i\ - 1 . This 

(19) 
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ig 

if 
If- 

!| ! 

corresponds to replacing q by 

q1 - im JTJ - 1 (*.17) 

In practice, it is possible to put q. s co in all cases, 

Along with I we will consider the function 

V(x,y,y'q) - 2px" exp f-^] ¥     (4.18) 

which we will call the attenuation factor. The quantities 

U2 and U are expressed through V as follows: 

U2 = e
iaks IT (*.19) 

and 

i(l+a)ks 
U = £  V(x,y,y',q) 

J sa sin a 
(4.20) 

The function W is obtained from (4.20) by replacing q by q,. 

Section 5. Properties of Particular Solutions 

of the Differential Equations 

In order to construct the function if satisfying the formu- 

lated conditions, it is necessary to investigate the properties 

of particular solutions of (4.09) which are obtained by separa- 
tion of variables. Putting 

* • elxt f(y,t) 

we obtain for f(y,t) 

a2f |-§ + [y + r(y) - t] f = 0 

(20) 

(5.01) 

(5.02) 
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^t us denote the solutions of (5.02) through f°(y,t) and 

f*ty,t),  which satisfy the initial conditions: 

f°(0,t) = 1 ; 

and 

r*(o,t) = 1 ; ($£)     - 1 

(5.03) 

(5.04) 

*» 

The general solution of (5.02) will have the form 

***, f(y,t) - A°f°(y,t) + A^y.t) (5.05) 

On the other hand, if r(y) decreases sufficiently rapidly 

as y increases, then for real t (5-02) will have one integral 

(determined to the accuracy of a constant factor independently 

of y) which will act as wx(t - y) for large y, and another 

Integral which will behave as wg(t - y) where v1  and wg are 
complex Airy functions which represent the solutions of the 

equation 

5-g + (y - t) W = 0 
dy2 

(5.06) 

obtained from (5.02) by replacing r(y) by zero. The functions 

w, and w2 have the asymptotic expressions 

i*       1  i 2 (y . t)3/2 
wx(t - y) - e4 (y - t) * e * (5.07) 

and 

w0(t - y) 

-iff       1  i 2 /„  t\5/2 

e * (y - t) * e  5 (5.08) iZ'" 

% 1 

(21) 

_. 
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Consequently, the behavior of the general integral of (5.02) 

as y—>OD for real t can be characterized by the constants 
Cj  and C2 in the expression: 

f(y,t) - ClWl(t - y) + cgw2(t - y) (5.09) 

Let us establish the relation between the constants A0, A*, 

Cy  C2 (which can be functions of the parameter t). 

By virtue of (5.02) and (5.06), we have: 

4- (v 4£ - f <*w \ . 3y \^W dy " f dy J   ' - r(y).f-w(t - y)   (5.10) 

In this equality, we can put successively w = Wj then w = w« 

and then integrate between 0 and 00. As a consequence of the 
relation 

dw,     dwp 
(5.H) 

we will have 

lim 
y—>co (

w2d7-f dir) = ^i (5.12) 

and 

lim 
y-^co (-. 

df-f^i) = . 
dw, 

3y " z ■dy- 21C, (5.13) 

and, after integration, (5.10^= yields: 

2iC2 = A°w2(t) + A*w2(t) - f r(y) f(y,t) Wg(t - y) dy 

(22) 

(5.14) 
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CD 

wj(t) + A*Wl(t) - / r(y) f(y,t) Wj(t - y) dy 

(5.15) 

If, here, we substitute (5.05) in place of f(y,t) we obtain 

the desired relation between the constants A0, A , C^,  Cg 
in the form: 

2«! = A°< Wg(t) - /  r(y) f°(y,t) w2(t - y) dyl 

#Jw2(t) - I     r(y) f*(y,t) w2(t - y) dy V + A 

(5.16) 

and 

-2iC2 = 

A*|Wl<t)  J 

r(y) f°(y,t) Wl(t - y) dy 

) 

r(y) f (y) wx(t - y) dy 

(5.17) 

Let us observe that the coefficients of the A0 and A 

in these equations are integral, transcendental functions 

of t. Actually, f°, f* w1# Wg are integral functions of t; 

the Integration can be carried out, in practice, between 

finite limits since r(y) can be set equal to zero starting 

(23) 



W  'H 

i im 

with some y.  (The same conclusion will be correct and without 
this limitation on r(y) if only r(y) decreases sufficiently 
rapidly at infinity.) 

Hence it follows that if the constants A0 and A will be 
integral transcendental functions of t, thon the constants C, 
and C? will have the same character. This allows us to apply 

case of arbitrary (5.16) and (5.17), derived for real t, in the 
complex values of t also. 

If we put 

A0 : A? 

and 

oo 

(t) = wx(t) - J  r(y) f*(y,t) Wl(t - y) dy (5.18) 

CO 

/ 

A = Ax(t) = - w'(t) +  / p(y) fo(y t) Wi(t _ y) dy 
(5.19) 

then 

fi(y,t) = Aj(t) f°(y,t) + A*(t) f*(y,t) (5.20) 

will be that solution of (5.02) which behaves as Wj(t - y) as 
y—»oo and which is at the same time an integral transcendental 
function of t. 

Similarly, if we put 

A° * A°(t) = 

and 
""'" I""''""' ■*" -" • "•-' 

(24) 
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oo 

* * A*(t) - - wg(t) -  I r(y) f°(y,t) w2(t - y) dy  (5-22) 

f2(y,t) * Ag(t) f°(y,t) + A2(t) f (y,t) (5.23) 

will behave as w2(t - y) as y—*oo and will be an integral 

function of t. 

The integral f-^y^t) will have the asymptotic expression 

y 

fx(y,t) = j c'e 

i7T 

ÜJy - t + r(y) 
exp j i I Ju - t + r(u) du 

(5.24) 

and the integral f«(y,t) will have the asymptotic expression 

-i7T y 

f2(y,t)  ■ 4|
c"e exp      -i    f   Ju - t + r(u)    du 

2 4Jy - t + r(y) L       C/ J 

(5.25) 

where c1, c" and T are constants. If we put r(y) = 0, %  - t, 

c' = c" =1 then (5.24) and (5.25) will transform into the 

asymptotic expressions (5.07) and (5.08) for w1 and Wg. 

We already used the integral f.,(y,t) in [l] where, how- 

ever, it was assumed without proof that such an integral exists» 

which has the asymptotic expression (5.24) and is, meanwhile, 

an integral transcendental function of t. The proof of this 

statement, which is reproduced here, can be used also for 

practical (numerical) construction of this integral. 

(25) 
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For complex t the function f,(y,t) Kill increase as y 
increases and the integral of the square of fn(y,t), taken 

over y from 0 to o will diverge. However, for certain assump- 

tions on the behavior of r(y) in the complex plane, f^y^t) 

will behave as w^ft-y) for complex y and will converge to zero 

on the ray y « re  (where a = -s  ), so that the integral 

I * 
coe 

J *f(y,t) dy (5.26) 

will converge. Let us evaluate this integral. Differentiating 
(5.02) with respect to t, we obtain . 

_d 

ay 
(g) ♦ fy ♦*) - tj g . (5.27) 

Hence, from (5.02) we obtain the relation 

f f2 dy» (f I!L_ . hk\ 
il \    dydt dydt/ (5.28) 

Putting here, f = f^t) and considering the upper limit of 
integration to be equal to ooeia we will have- 

.la oo e 

H K1^ 3t dy ) (5.29) 

7*11 lilt \\ 

Section 6. Construction of the Solution 

as a Contour Integral or Series 

In the previous paragraph we established the existence of 
two integrals of the ordinary differential equation 

(26) 
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d2f 
dy 

+ [y + r(y) - t] f = 0 (6.01) 

which are integral transcendental functions of the parameter t 

and have the asymptotic expansions (5.24) and (5.25). These 

integrals, which we denoted by f-.(y,t) and f«(y*t), are deter- 

mined by (5.20) and (5.23). 

We show now that with the aid of f, and f~ we can construct 

contour integrals for V and ¥ which are the solutions of our 

problem. Our reasoning will be similar to the reasoning 

explained in Sec. 3 of [lj , and the final formulas will.be 

analogs of (2.24) and (3.10) of [2*]. 

Let us denote the Wronskian by D12(t)r 

dfc    "of. 

'12' (6.02) 

and let us put 

1 fp(0,t) + qf?(0,t) 
P(t,y,y,,q) = ^  fl(y,,t) , f^) .   , f , ■ , , g -,. 

fx(y*t)l (6.03) 

where the primes of the f, and f« denote derivatives with 

respect to y. Let us consider y' > y, and let us form the 

integral 

f - 27rT /. 
ixt 

F(t,y,y',q) dt (6.04) 

taken around a contour wMch envelops all the poles of the 

Integrand in a positive d.  tion. 

(27) 
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Prom the definition of P it follows that P is meromorphlc 

in t (i.e. for finite t has no singularities except poles). 

The function P is completely determined even if the functions 

fj and f„, which are part of it, are determined only to the 

accuracy of a factor independent of y. Since, for all values 

of t the integrals f, and f2 are independent (this is seen 

from their asymptotic expressions), then the Wronskian D^2(t) 

has no roots and the unique poles of P are the roots of the 
equation 

fl(0,t) + qfx(0,t) * 0 (6.05) 

If r(y) * 0 in (6.01) then we can put 

*l(y,t) * wx(t - y) ; f2(y,t) = wg(t - y)  (6.06) 

Then 
Dlo(t) - - 21 (6.07) 

and the expression (6.05) for P reduces to the formula 
(2.21) considered in our work £2J. 

Let us show that Y, defined by the contour integral 
(6.04), satisfies all the conditions. 

First of all, it is evident that ¥ satisfies the 

differential equation (4.09) because the integrand satisfies 

it. Furthermore, f satisfies the boundary condition (4.13) 
since we have for all t and y1 

* + q P = 0 
3y 

(for y = 0) (6.08) 

There remains to show that f has the necessary singularity. 

With the aid of the asymptotic expressions (5.24) and 

(5.25) we can show that if x,y are small and the ratio y/x 

is large then the principal part of the integration in (6.04) 

will lie at large negative values of t. But If t is large 

(28) 
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and negative, then the term -t will play the main part in the 
coefficient of f in the differential equation (6.01). Con- 
sequently, for large negative t we will have, approximately: 

f1(y,t)^Vf1(0,t) e
ly J1^ (6.09) 

and 

f2(y,t)wf2(o,t) t-^JP^ (6.io) 

Substituting these expressions in (6.03) for P, we obtain 

F = jj=z J exp [i(y'-y) J^t] - ä - 1-fjE exp [i(y'+y) J^t ] I 

I (6.11) 

Substitution of this value of P in the integral (6.04) yields 
the Weyl-van der Pol formula for ¥, which after neglecting 
small quantities (in the second term) reduces to (4.15) 
characterizing the singularity of ¥. 

Therefore, the correctness of (6.04) for f is established. 

It is not difficult to transform from the contour integral 
(6.04) into a series, around the residues, referred to the 
roots of (6.05). Let us write this equation in some detail. 

UBing (5.20) for fx(y,t) and the initial values (5.03) 
and (5.04) of f° and f*, we obtain 

f^t) - Aj(t) ; f^(0,t) = A*(t)      (6.12) 

and (6.05) becomes 

A*(t) + q A°(t) « 0 (6.13) 

(29) 
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Substituting here the values (5.18) and (5.19) of A? and A 
we will haver 

w^(t) - qw1(t) -  / r(y) [f°(y,t) - qf*(y,t)] w1(t-y) dy = 0 

(6.14) 

We will call this the characteristic equation. 

It is essential, for us, that the left side of the charac- 

teristic equation be an integral transcendental function of t 

and that it contain only the functions f°(y,t) and f*(y,t), 

which can be obtained for all values of t by means of numerical 

integration of the differential equation (5.02) with the 

initial conditions (5.03) and (5.04). In that case when r(y), 

starting with some y ■ y-^, is zero, (6.14) can be integrated 

and the characteristic equation reduces to 

w*(t-y) [f°(y,t)-qf*(y,t)J + w^t-y) ^ [f°(y,t) - qf*(y,t)] - 0 

(for y * y±) (6.15) 

The characteristic equation for the case of a homogeneous 
atmosphere is 

w^(t) - qwx(t) = 0 (6.16) 

1&* h 

This equation is obtained from the previous formula by putting 

r(y) * 0 in (6.14) or by putting y = y1 -  0 in (6.15). 

We denote the roots of the characteristic equation by 

tx(q), t2(q), ... 

These roots will be functions of the parameter q. 

(30) 
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Let us compute the residues (6.04) numerically. Prom 

(6.02) and (6.05) for y ■ 0 and t ■ t results 

fg(o,t) + qf2(o,e)    x 

D12(t) f^Ct) 
(6.18) 

Moreover, the derivative with respect to t of the denominator 

in (6.18) is 

*2fi * a *fl - f   a ( *   dM -    f (a t\ «a 
dydt    dt    -1 3t V1! dy /    -1    dt 

Consequently, the residue of F at t : ta will be 

dtg f^y'.t,) f^y^t,) 

dq  fx(0it8)  ^(O^g) 

Taking the sum of expressions (6.20), multiplying by e 

we obtain the desired expansion of H  in the series 

(6.19) 

(6.20) 

ixt 

CD 
ixts dtg f^yStg) f^V 

/L-x dq  f!(0,t8)  f^O, 
s«l *.) 

(6.21) 

The quantities 

fl(*'*«> . 

*i(o.tB) 
= f°(y>t8) - qf (y,t8) (6.22) 

can be called the height factors. Let us note that the height 

factors are expressed, according to (6.22), through the func- 

tions f° and f* which are evaluated directly by means of 

numerical integration of (5.02). 

! 

ri 

(5D 



I 

M 

I i' 

..<      I 

3     1 

s 
1 

if.? 

In that case when q is very large or equal to Infinity 
(horizontal polarization, perfect conductor) (6.21) should 
be transformed by means of termwise multiplication into 

q2 *f(o,tB) 
q2(o,tj 

a 1 (6.23) 
s 

The result can be written 

ixt oo 

s-1 

8 (2^)    fi(y'*t.) fi(y>t,) 

v dq /  fi(o,tB) f>,t8) 
(6.24) 

The quantity 

d<l dt   \fj(0,t)/ 
(6.25) 

will be finite for q. 

(5.29) result 
>co 

«f(o.t) § 
coe 

■/ 

Let us note that from (6.19) and 

la 

2, ff(y,t) dy  (a -5 )   (6.26) 

Consequently, the series (6.2.1) can be written 

oo 

■E To  
s«l 

oo e" 

/ 

*f(y.t§)dy 

(6.27) 

In such a form, it recalls expansions In terms of eigenfunc- 
tlons. In (6.27) the "eigenvalues" are, however, complex and 
the "normalized integrals" in the denominator converge only 
for complex paths of Integration. 

(32) 
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In order to transform from f to the attenuation factor V, 

It is sufficient to recall (4.18) 

V(x,y,y',q) = 2jra exp [^] f 

In the case of a homogeneous atmosphere« when it is possible 

to put r(y) ■ 0 and f^y^t) s w^t-y) which results from our 
formula, the expressions for V reduce to Just what was derived 

in our earlier work [2J by another method. 

Section 7. Application of the General Theory to the Super* 

refraction Case (Schematic Example) 

The analog, considered in Sec. 3, with the unsteady prob- 

lems of quantum mechanics permits the formation of a qualita- 

tive picture of the superrefraction phenomenon and those 

conditions for which this phenomenon may occur. On the other 
hand, the general expression, obtained In Sec. 6, for the 

attenuation factor is suitable for quantitative computations 

which, by right, require sufficiently complex calculations. 

Let us write the expression for ¥ which is related to the 

attenuation factor. For brevity, putting 

f(y,t) * f°(y,t) - qf#(y,t) (7.01) 

we will have, on the basis of (6.21) 

co 

E 
8 = 1 

ixt  dta 
e  s —S f(y,t) f(y,t_)    (7.02) 

dq      s     s 

where the t_ are the roots of the transcendental equation 

(6.1V). If r(y) - 0 for y > y1? this equation can be written 

according to (6.15) as: 

(33) 
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wi(t-yx) f(ylft) + w^t-yj) f'fy^t) = 0 

where wj denotes the derivative with respect to the argument 

(t-y) but not the derivative with respect to y. The parameter 
q enters into this equation by means of (7.01). 

The determination of the conditions for which extra-far 

propagation is possible reduces to the study of the roots of 

the characteristic equations (6.14) or (7.03). In the absence 

of superrefraction, the imaginary part of the roots of this 

equation, which according to (7.02) yields the attenuation of 

the waves with increasing distance, will be of the same order 

as the real part. When there is superrefraction, there exists 

one or more roots with abnormally small imaginary part. 

In order to formulate the representation of the conditions 

under which extra-far propagation can occur, let us consider 
the following schematic example. 

Let the function r(y) be the following 

r(y) • (1 + n5) (y2 - y)   (for 0 < y < y^ 

r(y) = 0 (for y;L < y) 
(7.04) 

This corresponds to the assumption that the graph of the 

refraction index is a broken line as shown in Fig. 2. 

Figure 2. Dependence of thei 
Reduced Refraction Index 1 
on Height (Schmatic Ex.) I 

(34) 
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If the dielectric constant c Is considered to vary thus» 

« * 1 - g(h « hx) (for h < hx) 

c ■ 1 (for h > hx) 

then the parameter y? and y^ will equal 

5r~2 
^if-n yi8hi ^T 

(7.05) 

(7.06) 

»» 

Therefore the parameter u depends on the wave length« but 
the parameter y^ (the reduced height of the break point) * 
will be proportional to X"2'*. 

We write the equations for f as 

+ [(1 + u5) yx - v?y - t]f » 0 

(for y < yx) 

dff 
dy1 

d2f 

dy5 
+ (y - t) f a 0      (for y > yx) 

(7.07) 

Let us introduce Instead of t the new parameter 

*os 
t - (1 + u?)y3 

*2 

and Instead of y, the new variable 

e « 40 ♦ ay 
The value C s t^ will correspond to y ■ yl# where 

H *! ■ t - yx 

(35) 
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(7.09) 
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Equation (7.05) becomes 

& = «f 
«je 

(«« < e < IT) (7.11) 

The Airy functions u(£) and v(£) will be independent solutions 
o    * 

of the latter. The functions f and f will equal 

f°(y) - u-uj v(e) - v(eft) u(« 

Ay) • i [v(«0) u<0 - u(e0) v(oJ 

(7.12) 

By virtue of the relation 

u'U) v(e) - v'(0 u(|) - 1 (7.13) 

the functions f° and f will satisfy the initial conditions 

(5.03) and (5.04). Introducing according to (7.01) the 

function 

f(y) = -1 [qv(e0) + nv(e0)] u(e) + £ [qu(e0) + nu»(e>] Hi) 
(7.14) 

we obtain the characteristic equation if we substitute the 

values of f(y) and f' (y) for y = y.^ in (7.03). This charac- 

teristic equation can be written as 

*/..2i 
nv(ft0) + qv(l0) _ v^U^iUr^) * v(*i>w]fc *i> 
nu»(e0) + qu(e0)     nu'^^w^^) + uTe^T?^) 

(7.15) 

Let us assume that the magnitudes of y, and the parameter u. 

are sufficiently large. This means that the "potential well" 

on Fig. 2  is sufficiently wide and deep. In such a case, the 

(36) 
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quantities £, and \i |, [the arguments of the functions in the 

right side of (7.15)] will be large. By virtue of the asymp- 

totic expansions 

«(() = %   * exp [ | 45/2 ] I  T(t) -4 T * exp [- | ^] 

(7.16) 

the right side of (7.15) will be very small and the charac- 

teristic equation reduces, approximately, to: 

HV'U0) + qvUQ) - 0 (7.17) 

This case will occur when the gradient of the dielectric 

constant of air, at a sufficiently high region, will be 
o 

negative and larger than -| , where a is the earth's radius; 

then the curvature of the ray will be larger than the earth's 

curvature and formal computations of the "equivalent radius" 

are negative. 

The wave attenuation with increasing horizontal distance 

is related to the imaginary part of t and, thus, with the 

imaginary part of % ;  if i   were real there would be no attenua- 
tion. Attenuation may occur for two reasons: absorption by 

the earth and escape through the upper layer of the atmosphere. 

Absorption in the earth is characterized by the complex para- 

meter q. Equation (7.17) corresponds to that case when the 

attenuation occurs at the expense of absorption by the earth. 

If the earth be considered an absolute conductor, it is 

necessary to put q ■ 0 for horizontal polarization and q - co 
for vertical polarization. For q ■ 0, (7.17) reduces to 

v»(l0) ■ 0    (for q = 0) (7.18) 

The roots will be real negative numbers 

i0 '  -1.019 i    -3.2^8 ; -4.820 j ...     (7.19) 

(37) 
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For q « oo,   (7.17) becomes 

■ 0 (for q » oo ) 

and has the roots 

i0 = -2.338 ;    -4.088 ;    -5.521  : (7.21) 

Because § is real in these cases, there is no attenuation. 

Equation (7.17) will represent a better approximation to 

(7.15) if 4j (or its real part) be positive and sufficiently 
large. Since 

1  '»o T wl 

this condition will be fulfilled starting with some root £ . 

Consequently, the number of roots with small imaginary part 
will be finite. 

It is possible to derive an approximate formula for the 

correction to L, obtainable by computing the right side of 

(7.15). Let us denote by ^that root of (7.17) which we will 

consider as the inaccurate value of | and by A§ - the increment. 

This correction is obtained if we substitute the value of §,, 
in the right side of (7.15)» which equals 

«1 = *co+ WTi 

The approximate value of the correction is obtained from the 
equation 

exp [- \ ^] * t '-2S} 
(7.22) 

(38) 
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where 

S - 4 (n? 4 1) t^2 
(7.23) 

Let us note that the imaginary part of the correction is posi- 

tive. This corresponds to the fact that leakage in the upper 

layer increases attenuation. 

The applicability condition of these formulas is a suf- 

ficiently large value of ixy,. Let us recall that we have, 

according to (7.06): 

^iahi !|k2(6 * i> (7.2M 

where g is the gradient of the dielectric constant with opposite 

sign, a is the earth's radius, and h, is the height of the break 

point on Fig. 2. 

The larger the value of py, the larger the number of the 

almost-steady states with small attenuation. It can be said, 

roughly, that the number of such states equals the number of 

roots, i  , not exceeding the parameter py, (in absolute magnitude) 

The concept of the ray reflected from the upper boundary 

layer and from the earth's surface becomes applicable only when 

the number of almost-steady states (the number of terms in the 

series (7.02) with low attenuation) becomes large. Generally, 

the necessary condition for the applicability of the concepts 

of geometric optics is the slow convergence of (7.02), when 

a lar^e number of terms will play a part. If there are one or 

two terms in it (which can correspond to both almost-steady 

and attenuation states) then the ray concept is not applicable 

at all. 

(39) 
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Section 8. Approximate Formulas for Terms 
With Low Attenuation 

if 
if"7 

ir 

1 f"1 

1 

Using a method similar to that which is applied in quantum 

mechanics, approximate expressions can be derived for the height 

factors corresponding to terms with low attenuation, and also 

estimates can be given for that part of the damping coefficient 

which corresponds to leakage through the upper layer. 

In (6.01) let us put 

y + r(y) = p(y) 

and let us write this equation thus 

d2f 

dy 
+ [p(y) - t] f * 0 

(8.01) 

(8.02) 

In the superrefractlon case, the function p(y), proportional 

to the reduced refraction index, will have a minimum and will 

increase on both sides of itj to the left of the minimum the 

largest value will be p(0) and to the right p(y) will increase 

as y. If t lies between the least value of p(y) and p(0), 

then the coefficient of f in (8.02) becomes zero for two values 

of y which we will denote by y, and y«. In the interval 

y, < y < y2 the quantity fp(y) - tl will be negative, and 

outside this interval, positive. 

y2 can The solution of (8.02) in the interval y, < y < 

be expressed approximately, through Airy functions. Let us 

put 

h t - p(y) dy ■ I %1 
5/2 (8.03) 

and 

(*0) 
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(8.04) 

and let us denote by S the sum of these quantities which is 
independent of y *« 

S * P Jt - p(y) dy (8.05) 

We can consider the magnitude of S to be large. With such 
notation we have approximately: 

f u T^M    [vCW+^i^iO t - p(y) 

and also 

f = 
t - p(y) 

where 

(8.06) 

^A2u(|2) + B2vU2)] (8.07) 

and 

2*3/2      2*3/2    - s 

the constants A,* B^t  Ag, B2 are related through 

(8.08) 

A2 = \ Bie~S '»    B2 = 2Ale (8.09) 

which result from comparison of the asymptotic expressions 
for (8.06) and (8.07) at large values of ^ and 42« 

For y > y2 we can determine 42 
by means of the equality 

(*U 
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t dy = f(-(2)V2 

and using the previous expression (8.07) for f. 

Similarly, for y < y1  we can put, in place of (8.03) 

/ Jp(y) - t dy = I (-«i)5'2       (8.11) 
y 

and apply (8.06) for f. 

Let us chose the constants A, B such that the function f 

will be proportional to f^y^). We must put 

and therefore 

A2 = C1    ;    B2 = iC1 

■| C^ ;    B± - 20^ 

(8.12) 

(8.13) 

Then (8.06) and (8.07) become 

4 

f2(y,t)  = 20^  1—    J v(i) + 1 e"2S udjt   (8.14) 
4t - p(y)     L J 

and 

1—i— 
Jt - p(y)      1    2 

/ 

(8.15) 

Similarly, the following approximate expressions are obtained 
for f2(y,t): 

(42) 



f2(y,t) ■ 2C2efc -^— Jv(^) -^e-^uUji (8. 
- p(y) L J 

16) 

and 

f2(y,t) - c2 E P(y) w2(42) (8.17) 

In this approximation, the Wronskian D12(t) appears to equal 

D12(t) = - 210^2 (8.18) 

For y < y1 the functions u(fcj) and v(^) will be of one order. 

As a consequence of the smallness of the factor exp £-2SJ the 

second terms in (8.14) and (8.16) will represent small correc- 

tions [generally speaking, less than the error of the whole of 

expression (8.14) or (8.16)1. Consequently, the functions 

f1 and fg in the y < y-^ region will be almost proportional to 

each other. 

Discarding the small increments, the equation defining t 

can be written; 

(•). 
v'UJ + qv(i ) « 0 (8.19) 

Here £ "nd 
dti 

denote the values of £, and -g-=- at 

y = 0. This equation is analogous to (7.17). 

It yields just that part of the attenuation coefficient 

of the wave which occurs for absorption by the earth. Since 

the complex parameter q which characterizes the properties 

of the ground, is known only very roughly, it is sufficient 

to take the coefficient (-g*J 

to put, according to (7.06), 

in a rough approximation and 

(45) 
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(«)„■•■ !F (8.20) 

where a is the radius of the earth and g is the gradient of 

the dielectric constant taken with opposite sign. Then (8.19) 

will reduce to (7.17) which was studied in the preceding 

paragraph. The roots iQ  of (8.19) will be related to the 

corresponding values of the parameter t through 

/i \  + € 
m 

-1+S"  dh = 
a <-e0> 3/2 (8.21) 

where h, is the lesser of the two values of the height h, h, 

and hp, for which the radical becomes zero. 
* 

If £    is real, then h, and t are real; if | is complex, 

then evaluation of the integral (8.21) requires analytic 

continuation of the interpolation formula for € into the 

complex domain. 

A necessary condition of the applicability of the previous 

formulas is the smallness of the quantity e  , where S has the 

value (8.05). In the customary units, the integral which 

expresses S, is written 

S = k I J*-(«—*>• (8.22) 

Determining t from (8.21), it is necessary to verify that the 

integral S is sufficiently large for this t. 

In the case of an absolute conductor (q * 0 ; q ■ 00 ) 

the approximate values of | and t obtained from (8.19) and 

(44) 
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(8.21) are real. In this case, It can be said that the approxi- 
mate value of the imaginary part is the correction to |Q. 

Putting 

*o *  *o + «o (8.23) 

we will have 

r< 6        *
M - 1 -2S 

" *o " *o " T e (8.24) 

We will not dwell on the derivation of this formula. 

Since |Ä is a small quantity, then the increments 1,0 n      dt A£Q = i£ will correspond to the increment At • it ■ -n A£Q. 
'o 

But the quantity (8.24) multiplied by i is the increment to 
ft 

the integral (8.21). Consequently, we can determine t 
(the imaginary part of t) from 

*• 

+ € - 1 + »I  dh) 1 -2S -f e (8.25) 

Since the derivative of the integral is negative, then t is 
positive, which corresponds to attenuation. 

The formulas which were obtained permit the derivation, 
also, of approximate expressions for 4| . According to (6.19) 
we have 

a2 log f1 

dt   ay at 
(8.26) 

Substituting, here, the value of f^  from (8.14) and neglecting 
small quantities, we obtain 

(45) 
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(8.27) 

Here we can put,  in a rough approximation, 

(#!■> 
(8.28) 

[see formulas (7.08) and (7.09)]. Using the differential equa- 

tion and the limiting conditions for v, we obtain: 

2  P 

dt  n3  a. 
(8.29) 

The first terms of the series (6.21) which possess low attenua- 
* 

tion, will be equal, in our approximation, to 

2 e ixt   
V<*1> v<0 

(S-7)^< 
= 2 e 

ixt  ^(£i) v(0 

v^Uo) " «o v2<Ü 

(8.30) 

where §^ refers to the reduced height y*. 

If i0  is so much larger in absolute value, that asymptotic 
expressions can be used for v(| ) and v'(|0) then the denominator 

in this formula will equal approximately 

v,2(*0) " *o v2(*o> ■ J7^ (8.31) 

In conclusion, it is necessary to emphasize that the formulas 

derived in this paragraph are based on rough approximations and 

are Intended for rough computations. More exact computations 

should be based on the rigorous theory explained in the previous 
paragraphs. 

(46) 
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VII. THE FIELD PROM A VERTICAL AND A HORIZONTAL DIPOLE, 
RAISED SLIGHTLY ABOVE THE EARTH'S SURFACE 

V. A. Fock *» 

In the book "Diffraction of Radio Waves Around the Earth's 
Surface" we developed a general method for the summation of the 
series representing the field from a dipole on the earth's sur- 
face. The shape of the earth is assumed spherical, In  that 
work our method was applied to the case of a vertical dipole, 
located on the surface. The case of a slightly raised vertical 
dipole is of no less interest. We propose to analyze this case 
in the present paper. 

1. Vertical Raised Dipole. Solution in Series Form. 

We will employ the notation used in ref. 1. Let k be 
the wave vector in air, r\ the complex dielectric constant of 

I/o 
the earth, and kp * kr\   ' the complex wave vector for the 
earth. For simplicity we will not consider the atmospheric 
refraction, and remember only that calculation of the re- 
fraction effect can be accomplished approximately, if we 
replace the earth's geometric radius a by an equivalent 
radius a*. 

We introduce spherical coordinates r,e,# referred to the 
origin at the center of the earth and with the dipole along 
the polar axis. The field components in air are expressed in 
terms of the Hertz function U by the equations: 

E. r sin 6   3P (3ln e &) 
(• 

E 0 

±, 
H 
"* 

" r 3r \? "SB) 

(1.1) 

(1.2) 

(1.5) 
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Let the elevation of the dipole above the earth's surface be 

denoted by h»b-a (so that b is the distance of the dipole from 

the center of the earth). We introduce the functions *n(x) and 

Cn(x), related to the Bessel and Hankel functions as follows: 

*n<x> - ^ 
7TX 

J         1 n+2 
(x) 

Cn(x) - TIX 

T n+ £ 
(x) 

(i.M 

(1.5) 

and we denote by Xn(x) the logarithmic derivative 

Xn(x) - Vn (x) / *n(x) (1.6) 

and by Pn (cos 6), the Legendre polynomial. 

The expansion of the Hertz function U in the range 

a £ r < b will then have the form: 

co 

U = EEF J>      <2n+1) Cn(kb) fVkr) " *n  Cn(kr)] Pn <cos e> 

n=0 ~ %       (1.7) 

where 

k2^n(ka) - k^n(ka) xn(^2
a) 

n " k2^(ka) - kCnita) xn(V
) 

(1.8) 

These equations are listed on p. 5 of ref. 1. Further 

calculation there, however, is carried out only for the case 

r «■• a. We shall now free ourselves from this limitation. 

(2) 
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-. Approximate Series Summation for the Hertz Function 

For the approximate summation of the series we can apply 

unchanged the method outlined in ref. 1. We write the series 

(1.7) in the form: 

U «^ (n + |) 4>(n + |) Pn(cos e)     (2.1) 

n=0 

where 

*<n + I5 - lb? Cn(kb> (jM1^ " *n «n^O    „ (2.2) 

We put n + i- * v and consider v as a complex variable. 

The function 0(v) is an analytic function of v with poles 

only in the first quadrant. As shown in sec. 2, ref. 1, for 

the condition ka » 1 the sum (2.1) can be replaced to a good 

approximation by the integral 

-i 7T 

U = 
J27T sin 6 

I eiv6 +(v) JT dv (2.5) 

where the contour C goes from infinity in the second quadrant, 

Includes all poles of $(v) and extends to infinity in the first 

quadrant with the complex variable v. 

The principal portion of the contour will be that in 

which 
1/3 

(2.4) 
1/3 

v = ka + (k a/2)   T 

while I T I is bounded (since ka is assumed very large). The 

quantity 
1/3 

m - (k a/2) (2.5) 

represents the "large parameter" of our problem (we will 
o 

discard terms of the order of 1/m in comparison with unity). 

(3) I 



£ 

I! 
f*; 

Ott 

li 

This quantity will frequently be encountered in further 
calculations. 

Over most of the integration range we can replace the 

functions ^ and Cn by their asymptotic expansions in Airy 

functions, investigated in detail in ref. 1. We shall consider 

four Airy functions; U(T), V(T), W1(T) and W2(T). These 

functions represent solutions of the differential equation 

W"(T) - T W(r) (2.6) 

connected by the relations 

WX(T) - U(T) + iv(x)    W2(T) - U(T) - iv(x)  (2.7) 

For real T the functions U(T) and V(T) are real. The function 

W2(T) is expressed in terms of the Hankel function of 1st kind 
and of l/j5 order by the equation 

wa(T) =. e1 T (V?)l/2 (.t)lA HW j| (.T)J/2]     (2.8) 

Sometimes we will write W(T) instead of w, (T). 

The asymptotic expansions for the functions £ and thei: 
derivatives have the form: 

Cn(ka) - - im1/2 WI(T)   C„(ka) = im"
1/2 wj(t)  (2.9) 

Taking the real parts, we obtain 

^n(ka) = m
1//2 v(~)    ^(ka) - -m"1/2 V'(T)   (2.10) 

The quantity xn(
ka) may* according to equation (5*21) in 

ref. 1, be replaced by the expression 

Xn(k2a) - i 1  k* 
K2 

» - i ifcl 
(2.11) 

(*> 
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putting also 

q «a im *^ - 1 Jn 
and substituting in (1.8) we obtain 

A - i vV) - qv(t), 
n    W^(T) - qw1(T) 

(2.12) 

(2.13) 

In the equation (2.2) for $(v) the functions fn(kr), Cn(kr) 

and Cn(*b) enter. Their asymptotic expansions may be readily 

obtained from the foregoing» We set 

kh 

*i * if <r-a>" T 

y2 -1 <>-»> - TT 

(2.14) 

(2.15) 

where h2 is the source height, 1^ is the height of the point 

of observation, and y2 and y^^ are the corresponding 'reduced 

elevation':'. We then have 

1/2 
Cn(kb) - - im   w1(t-y2) (2.16) 

1/2 
Cn(kr) « - im   w1(T-y1) 

1/2 
*n(kr) » m   vf-t-y^ 

and the function $(v) is written in the form 

(2,17) 

(2.1C) 

$(v) - -~g   P(T,ylfy2,q) 
am 

where 

'i(T-y2)v 

(2.19) 

v(T.y ) . V|(T) - VW    w^x-y^T (2.20) 
WX(T) - qwx(x)       J W'(T) 

(5) 
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Expressing v in terms of w1 and w„, we can also write 

i        f        wo(T) - <JWo(f)        *) 

L        W1(T) - qw1(T)        ^ 

We must now substitute the expression for 0(v) into (2.3). 

Introducing the horizontal distance s<a6, measured along 

the circumference of the earth, and the 'reduced horizontal 

distance» 

1/5 

1/2 
(*) 

ms 
a (2.22) 

and replacing v   in (2.3) by the constant (ka) ' , we obtain 1/2 

iks 
U 

-Jsa sin (s/a) 
V (x,y1,yg,q) (2.23) 

where 

V - e 

i7T 

T (»r/ eixT P(T,yi,y2,q) dT 
(2.24) 

This equation is valid for y, < y2; if on the other hand 

y"l > y2' At is necessary t0 interchange y, and y« in the equa- 
tion for P. The function V may be called the attenuation 

factor. 

3. The Attenuation Factor 

Turning now to a study of the attenuation factor, we examine 

first several limiting cases. We put y-^ * 0, corresponding to 

the case when one of the points (source of point of observation) 

is located on the earth's surface. We then obtain 

P(f,0,yg,q) = -j 
W2(T - y2) 

W1(T) - qwa(T) 

(6) 

(3.1) 
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and equation (2.24) for the attenuation factor is reduced to 

equation (6.02) in ref. 1. 

We now consider a second «case. We take x and yg very- 

large, but the difference 

(5.2) 

as finite. Replacing in (2.2.1) the function w^x-Vg) by its 

asymptotic expansion (equation 8.04 in ref. 1), we have 

/ 2 \?      * 
V(x,y1,y2,q) « f ^ J 

^1/4 * 5 '2 
e 

{, (T-y0) - 
W2(T) - qw2( 

W^(T) - qwx( 

»■—-« — /» *■— —• — 

dt 

(5.5) 

The integral coincides with the expression obtained in 

our work "The Field of a Plane Wave Near the Surface of a 

Conducting Body"^ (equation 4.59). This agreement is entirely 

understandable. Indeed, for large x and y2, the source is 

remote from the point of observation and from the earth's 

surface, so that a wave, proceeding from the source, may be 

regarded as plane. 

In the general case the integral (2.24) for V may be 

evaluated as a 3um of differences. The function P, defined 

by (2.20) and (2.21), may be written in the form 

P = w1(t-y2) 
WX(T) - qw1(T) 

(5.4) 

where 

f(yi>*) - [WI(T) - qwx(T)J v(T-yx) - [V'(T) - qv(t)J w1(t-y1) 

(5.5) 

(7) 
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We note that for y,  - 0 the function f and its derivative take 
on the values 

f m  1 ^7   = "q (3.6) 

Hence it is not difficult to conclude that if T is a root of 

the equation 

t 
"lit)   - qWx(T) * 0   T - Tj/Tg (3.7) 

then the value of the function f coincides with the value of 

the expression 

f(yi.Ts) - f.(7l) - "
1<^t^)l)       (3-8) 

which may be called the "height factor". 

Evaluating the integral (2.24) as the sum of differences 

at. the points T * xQ, we obtain the following expression for 

the attenuation factor V:    V(x,y1,ygfq) ■ 
iXT. 

e 4  2 Jro 
rs w1(TB-y1)  w1(TB-y2) 

s= 1  V*     Wl(Ts) W^Ts) 
(3.9) 

which differs from our previous expression for V, corresponding 

to the case y-^ = 0 (see eq'n. 7.06 in ref. 1) only in that now 

two height factors enter Instead of one. The elevations y^ and 

y2 enter symmetrically in (3.9). Using (3.7) we can write 

(5.9) in the form: 

i?r 
IT 

V=-eH  2 J^2 r^ 
w1(T8-y1) w1(Ts-y2) 

s=l 
V?  *J(*B)    W^(T8) 

(3.10) 

This form is convenient for q large. In particular, for q = oo 

we have 

(8) 
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- e 

i7T 
T 

00 

\*  **Ts Vl^s"7!5 wl<T5"y2) 

4^2_A 
8=1 ">i)    »T^ 

(5.11) 

where the quantities T8 are roots of the equation 

*1<*S> - o (3.12) 

The series thus obtained are convenient for calculations in 

the region of shadow. In the illuminated region they converge 

very slowly, but there one may use a reflection formula, which 

will be developed in the next section. In the penumbra region 

one must resort to quadrature for the calculation of V. 

4. Reflection Formula 

We now consider the field in the illuminated region. We 

may expect that in this case a reflection formula will be 

obtained which applies to the reflection of spherical waves 

from a spherical surface. In the integral (2.24) we may take 

the expression (2.21) for P. This expression contains two 

terms. The integrals from each of these terms separately may 

not converge (only their difference converging) but, applying 

the method of stationary phase, we can confine ourselves to 

the consideration of that portion of the integration lying near 

an extr&sium of the phase, and may then examine each integral 

separately. 

Vw . 

We put 

iTT 

iTT 

7e 

41/ .iXT •   W1(T - y2) W2(T - yx) dx (4.1) 

jixT Wg(T) - qwg(T) 

WI(T) - qw1(x) 
w^T-y^ w^T-yg) d* 

(4.2) 

(9) 
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Then the attenuation factor V will be equal to the difference 

V° - V* (4.3) 

Assuming that the most of the range of integration lies in the 

region of large negative T and crosses the negative real axis 

of T from left above to right below, we can replace w, and Wg 

by their asymptotic expansions, appropriate to this region. 

According to equation (8.05) in ref. 1, we may put 

TT , 2 

Wl(x-y) = e 
? (y-x)-1/4 e 5 

m  e   (y-T) ' e ' 

i * (y-t)5/2 

2 

w2(x-y) 

(4.4) 

(4.5) 

Substituting (4.4) and (4.5) in (4.1) we obtain 
7T 

v° = Je
i,f i   /\MT)       dT 

)(y2-
T0 

TÄ (4.6) 

where 

(B(T) - XT + T (y2 - *05'2 - I (y^) 3/2 (4.7) 

Evaluating T from the condition la (i) = 0, we have 
2 2 T2-y^- 

4 yi-f = 
y^-y^*   .  y0-yi+

x" 

2x 
y0-

T = 
2x 

(4.8) 

We note that for (4.4) and (4.5) to apply, both quantities 

(4.8) must be much greater than unity. The value üJ(T) at a give» 

T we denote by u>. This quantity is equal to 
i2 

Ü3 
(yry2)   , i _ /„ .v s    i x3 

—*i—   ff      x 2  " ** (4.9) 

Application of the method of stationary phase to the integral 

(4.6) gives 

V9 - ei<0 (4.10) 

(10) 
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The quantity to has a simple geometrical meaning, namely 

CD - k(R-s) (^.11) 

where R is the distance between source and observation point, 
considered as a straight line, and s is the corresponding 
horizontal distance, measured along the earth's circumference. 
Prom this it is clear that the quantity V° corresponds to an 
incident wave. 

We now examine the integral V*. Substituting in (4.2) 
the asymptotic expansions (4.4) and (4.5), we obtain 

iTT 

v» = ^TJf 10(T) q-i„ 

q+i 
-T dT 

~  [(y^Ky^)]1/4 
(4.12) 

where 

*M - XT ♦ | (y, - T)V2 + | (y2.T)Va . » (.T)l/2  (lf.15) 

We denote by T = - p the root of the equation 0 (T) =0; 
where p > 0. The quantity p is the root of the equation 

J yi+p2 + 4 y2
+p2  - 2P + X (4.14) 

which is reduced to a cubic equation. We denote by <f>  the value 
of the phase <p{x)  at T » -p . Using (4.14) we can eliminate 
all the radicals except p and write <f>  in the form: 

I „5 0 m  - 3p x + 2p(y]+y2-x
c) + x(yx+y2) - jx (4.15) 

Evaluation of the integral V* by the method of stationary 
phase gives 

v - Sit -J7 el* 
where 

px 
Jpx + x* - yx - y2 

(11) 

(4.16) 

(4.17) 

Urn 

i"t| 

-!.a 
I 
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The equation obtained has a simple geometrical interpreta- 

tion. The quantity p is expressed as 

ka Y/3 

p « m cos 7 * I 3f- J   cos 7 (^ J "  cos 7       (*.18) 

where 7 is the angle of incidence of the beam (Pig. 1). 

; P * ! 
1:  ! 

Pig. 1 

The factor (q - ip)/(q + ip) is the Presnel coefficient 

with reversed sign. A is the product of R/r, times the cor- 

rection for spreading of the bundle of rays after reflection. 

The phase 0 is approximately given by 

0 » k(r1 + rg - s) (*.19) 

where rg is the path traversed by the beam after reflection. 

The expression for the integral V thus obtained by the method 

of stationary phase 

v - ^ - 3£ F el* (4.20) 

agrees exactly with the reflection formula. It must be emphasized 

that this expression (and consequently also the reflection formula) 

is valid only under the condition that p be sufficiently large 

compared with unity (it is sufficient to require that p be greater 

than 2, or better, p > 5). 

(12) 
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If x, y, , and y« are given, then p is determined from 
(4.14).    This equation can be most simply solved in the 
following way.    We introduce a n^w unknown, z, putting 

Jyx + p2    - p « | (x + z) 

J y2 + P2   - p - | (x - z) 

(4.21) 

(4.22) 

Solving (4.21) for p, we obtain 

P " xT-z * k  <x + z) 
(4.25) 

while (4.22) gives 

_i_ .*(,-.) (4.24) 

Adding the two expressions for p, we obtain a cubic equation 

z5 - z(x2 + 2yx + 2y2) + 2x(yx - y2) - 0   (4.25) 

which is not difficult to solve. We set 

p2 = 4 (*2 + 2yi+ 2y2);  (P > °> 

sin a 

3 

3t(yx - y2) (-|<a<|) 

(4.26) 

(4.27) 

Then the root of (4.25) in which we are interested is 

z = 2p sin (a/3) (4.28) 

Using the cubic equation, one may write an expression for p 

in terms of z in the form 

1 iJ2.  . _2v 
2px - y1 + y2 - ■§  (* + z ) 

(1?) 

(4.29) 

»» 
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The expression for V can be simplified if we introduce the 

quantity 

2   2 x - z 

2x 

2px + x* - yx - y£ 
(4.30) 

We then have 

„   icu V =« e 0-4*8 _p^)°21PlP    (4-J1) 

We note that x,z, and p^ can be written approximately as 

1/3 . / „ \l/3 ör "• + r0) ,  z * 
-(*)"">-'*> 

/ k \i/3  2rlr; 

\2aV    (rx + i 

if y, = 0, 

r2> 

z = - x, p - (y2 - x*)/2x; px - 0 

(^•32) 

(4.33) 

If y, » y« «■ y, we have 

z - 0, p - y/x - j     Pi " f (4.34) 

We now set x -Jy^ » § as In (J.2) and increase x and JyT, 

holding 4 finite. This corresponds to the transition to an 

incident plane wave. Putting for brevity 

J r + 3yx - a (4.35) 

we have 

z - - x+l (cr+ 4), P -5(0-20« ^-fCa+t) (4-36) 

(14) 



and equation (4.51) gives an expression for the integral of 

(J.J) which coincides with that obtained in J 6, ref. 3, for 

the case of a plane wave (Note,: The factor 2/27 in equation 

6.19 of ref. 3 should he changed to 4/27). 

5. Horizontal Electrical Dipole. Primary Field. 

The field of an electrical dlpole may be written in the 

form: 

E - grad div n - AH, H ■ - ik curl n (5.1) 

where II is the Hertz vector, directed along the axis of the 

dipole and proportional to the quantity 

n0 - e
lkR/R 

where 

R - Jb* + rd  - 2br cos 0 

(5.2) 

(5.3) 

Our spherical coordinates are connected to cartesian coordi- 

nates by the relations 

x = r sin 6 cos 0, y =» r sin 9  sin <t>,    z = r cos 8   (5.4) 

Taking the dipole, located at x ■ 0, y »0, z = b, as 
directed along the x axis, and setting the coefficient of 

proportionality between n and n as unity, we can write 

n . n » 0, II o'  y   '  z (5.5) 

The field components are obtained after substituting 

the vector (5.5) into equation (5.1). In the following we 

shall need only the radial components of the primary dipole 

field or the quantities rEr and rHj,, proportional to them, 

which because of the conditions 

div I « 0, div IT - 0 

(15) 

(5.6) 
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are solutions of the scalar wave equation.     (5.1) and (5.5) 
give the following expression for rE : 

hü sin e dn 
rEr = cos 0 -^ (cos 6 ^ — -5r ) - 

x        an     cos © dn % 
cos 0 (sin 0 ^ + —r— ^ )      (5.7) 

Since II    is related to r,0, and b only through R, we have 

dn       sin 0 an 
cos e lr — ST 

dn 
0 

"3B" 

dii     cos 0 3n      T an 
«4„   « 0    . 0 10 sin e ~5F~ + ~T~" "30" " b"3b~ 

Therefore we can write instead of (5-7) 

on   I 

(5.8) 

(5.9) 

rE0, - - cos *%g (-^ +^) (5.10) 

The quantity rH is immediately obtained from (5.1) in the form 

rH0, » Ik sin <t> -33°- (5.11) 

In the last two equations we used the superscript o to 

emphasize the fact that these equations refer to the primary 

field. 

On the other hand, the complete field can be expressed 

by means of two auxiliary functions u and v according to the 

equations 

r  r 

E -  1 3 (ru)    lo>   dv 
6  " r dr de       c sin 0 "3? (5.12) 

E 
0 

1  d (ru)  , a» dv 
v  sin 0 dr d0 

(16) 

c "3? 
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H„ « 

HA - 

H* • k<t> 

- — A*v r 

0) 
ick2    du , 
sin e "50 "** 

1 ö'(rv) 
r* dr öd 

- i lid 
(0 

ou . 
"35" + 

1 
r sin 6 

d2(rv) 
cJr d<f> 

(5.13) 

where A* is the Laplace operator on the sphere 

*« " dhr W (Bln * IS) + eIH^-5 $      <5-») 
The functions u and v may be considered as electrical and 

magnetic Hertz functions; sometimes they are called Debye 

potentials. Both of these functions satisfy the scalar wave 

equation. 

The equations (5.12) give both the field in air and in 

the earth. For air one muBt put for the earth k ■ kg - 
(a)/c) Fr\     where o> is the frequency; in the following we 

will take k to mean the value of this quantity for air. 

The boundary conditions for the electrical and magnetic 

Hertz function arise from the continuity of the tangential 

components of the field at the earth's surface. Denoting by 

the superscript 2 those quantities which refer to the field \ 

in the earth, we can write the boundary conditions in the form: 

a 

(5.15) 

(5.16) 

We must find the form of the functions u =» u and v ■ v , 

corresponding to the primary field in air. Adding the 

expressions for rE° from (5.10) and (5.12), we obtain 

A*u--cos +•& (-3^ + ^       (5.17) 

(17) 
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Out of these relations It Is easy to determine u° and v° 
If vre write nQ In series form 

Ü.J.V 
R   kbr Z I 

A* v « - Ik sin 0 "32T (5.18) 

(2n+l) Cn (kb) ^n (kr) Pn (cos 9) 

n=0 (5.19) 

valid for r < b. The results are more conveniently written 

U° - - COS 0 -gg-     V° » - Sin $ -gj- (5.20) 

where P° and Q° are new auxiliary functions which also satisfy 

the scalar wave equation, but do not depend on the angle. 

We have 

0" ■ ^ YL ^^ ^(kb) ^(kr) ?n (cos e) (5,2i} 
r.-.i 

00 

«"■B     2J   nfnäy   «n W *n <to> Pn <008 8>        (5-22) 
n»l 

6. Series for the Total Field 

We represent the functions u and v, in terms of which, 

according to (5.12) and (5.15), the total field is expressed, 
in the form: 

u m  - cos * -gj J v * - sin <t> -|j (6.1) 

(18) 
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where P and Q satisfy the scalar wave equation and the follow- 

ing boundary conditions, arising from (5.15) and (5.16): 

A-kfpW, agi'-ilglSl, r - a 

a 

(6.2) 

(6.3) 

and do not depend on the angle <f>.    Keeping in mind the form 
of the primary excitation (5.21), we can write Beries for 

P in air and in the earth as follows: 

co 

p ' " H? X Ä" ^ (kb) [^ ' ** Cn(kr)^ Pn(C0S 6) 
(6.4) n=l 

(a < r < b) 
oo_ 

I ' pU) " - W  /\ 5W «n (») < *n <V> Pn<°°8 *> 
fe» (6-5) 

0 < r < a 

The boundary conditions (6.2) give for the coefficients 
i 

A and A_ the equations 

k2 An Cn (ka> + k* Ki  *n (k2a> a k* *n <ka> 

k \i  5n (ka> + k2 *n *n 'k2a) " k *n <ka) 

from which 

k2 f£ (ka) ^n (k2a) - k i>n  (ka) ^ (k2a) 

^ " k0 C' (ka) * (k.a) - k r (ka) J7 (k0a) k2 "»n "n v~2* 

ik2A, 

•n rn \-2 

n  k2 ^ (ka) *n (k2a) - k Cn (ka) j£ (kga) 

(19) 

(6.6) 

(6.7) 

(6.8) 



<f ■ 
i 226 

We note that the coefficient A„ here Is exactly the same as n 
In the series (1.7) for the Hertz function U of a vertical 
dipole. Comparison of the series (1.7) and (6.4) for Ü and 
for P shows that these functions are connected by the relation 

». 

%-■■ ■ 

* 

A*P dU . U 
~85 + S (6.9) 

This connection between P and Ü permits us In the following 
to use the results at hand for the summation of series and to 
express P In terms of the attenuation factor V which we have 
already studied. 

In analogous manner we can obtain series for the function 
Q In air and In the earth. Remembering (5.22), we can write 

oo 

g-ibX HTHSIT 'nt*» [*„<kr> - Bn «n<kr>] Pn<cos •> 
n=l 

(a < r < b) 

oo 

«(2)  - W 2J AT    «n<tt> Bn *n<V>  Pn(°os "> 
n=l 

(0 < r < a) 

The boundary conditions (6.3) give 

Bn ;n(ka) + Bn  ^„(k0a) - ^n(ka) n 'n h rn^2* rn' 

*Bn ^(ka) + k2 B; *n(k2a) . k^(ka) 

(6.10) 

(6.11) 

(6.12) 

from which 

(20) 
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B, 
k* (ka) *n(k0a) - k0tf (ka)tf (k9a) n' 'nv~2 2Yn' "nv~8' 

n k?n(ka) ^n(k2a) - k2Cn(ka)*n(k2a) 
(6.15) 

B^ = ik/ k^(ka) Vn(k2a) - kg Cn(ka) ^(kga) (6.1*) 
*« 

Thus we have determined series for the function Q. We 

note that Q is connected with the Hertz function for a 

vertical magnetic dipole (horizontal space antenna). The 

field from such a dipole can be represented by equations 

(5.12) and (5.15), where we must put 

u - 0 , M W (6.15) 

where the factor M is the magnetic moment, and the function 
W is of the same nature as n    and satisfies the same boundary 
conditions  (5«l6) as v. 

For the function W in air we obtain an expansion of the 
form 

00 

W * kT?^3   Un+1)  ?n(kb)  tn(kr)  " Bn Cn(kr)^ Pn(C°S 8) 
n=0 (6.16) 

where B is given by (6.13). Comparison of the series 

(6.10) and (6.16) for Q and for W yields the relatior 

A*Q »• ik W (6.17) 

The same relation (with the same value of k ■ u>/c) is obtained 
for the value of these functions in the earth. 

(21) 
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7. Approximate Expressions for the Field 

Series for our functions P and Q are constructed analogously 

to the series for U which was summed approximately in the preced- 

ing sections. In addition, P is related to U through (6.9). 

Therefore, it is not necessary to repeat the arguments which 

led us to the summation of the series for U, and we can use 

the results already obtained. For the determination of P we 

use the relation 

A*P 

and the value (2.22) for U: 

dU u U 
SB  + E (7.1) 

iks 
Ü 

rfj sä sin(s/a) 
V(x,y1,y2,q) (7.2) 

It can be readily seen that in those approximations in 

which (7-2) is valid, the application of the operator A* to 

functions of the type U or P is equivalent to multiplication 
2 2 

by -k a . On the other hand, on the right side of (7.1) we 

can neglect the term U/b in comparison with the derivative 

dU/öb and express this derivative according to (2.15) as the 

derivative with respect to y„. (7-1) then gives 

-k2a2 P k dU 
m Sy^ (7.5) 

from which 

ÖU 
ka m ay, 

(7.4) 

1 1 

Analogously, one can express Q in terms of W on the basis of 

(6.17). We obtain 

Q - - (i/ka2) W 

(22) 

(7.5) 



We have already derived an approximate expression (7-2) 

for U. An analogous expression can be derived for W. The 

series (6.16) for W differs from the series (1.7) for U only 

in that the coefficient An, determined by (1.8), is replaced 

In it by the coefficient B , determined by (6.13). With the n 
same degree of accuracy to which (2.12) is valid, we can 

write 

v'(x) - qxv(T) 
B. n 

W^T) - q^f-r) 
(7-6) 

where 

qtj ■ lm(Tj-l) 1/2 (7.7) 

*« 

Therefore W differs from U only by the substitution 

of q for q,, and we have 

iks 
W -   e        V(x,y1,y?,q1)      (7-8) 

Jsa sin(s/a)       x    c 

In practice one can put q^ = co in all cases. Then the series 

for V acquires the form (3.11). 

We must now substitute the expressions obtained into the 

equations for the field. To do this, we find first the 

electrical and magnetic Hertz functions u and v. On the 

basis of (6.1) we have 

u - h %i cos * (7-9) 

v »•. - ± W sin 0 
ct 

(7.10) 

We substitute these expressions into (5.12) and (5.13)» ' 

retaining only the important terms and neglecting quantities 

of order l/m2 compared with unity. We then obtain the follow- 

ing simple expressions: 

(23) 
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Er - - k*au 

E0 - 0 

lk2  dU   no« A — ^— cos <t> 

E. - k2av = - k2 W sin $ 

H. k2av - - k2 W sin 0 

H e 
lk2a dv 
m  ~3y^ 

ik2 dW _,_ . 

H. k au » ■=—- -g— cos 0 

(7.11) 

(7.12) 

These expressions give the field in »reduced' units (the 

moment of the electrical dipole is taken as unity). To obtain 

the field in conventional units, the expressions must be 

multiplied by the magnitude of the electrical moment. 

We now compare the relations (7*12) with those for a 

vertical magnetic dipole with unit moment. In accordance 

with (6.15) we put u ■ 0; bv » W, obtaining 

E. 0; ae 0; E, - 
0 

k*W (7.13) 

, tin im 

Hr - k^W; He 
lk. 
m 

ÖW . H 
* 

(7.14) 

Thus in the plane perpendicular to the electric dipole, its 

field either coincides with the field of a vertical magnetic 

dipole (0 m Jtr/2),  or differs from it in sign (0 - w/2). 

(24) 

Ml 



In conclusion we may make t remark about the character 

of the field at different distarees from the source. At 

finite values of reduced horlzor.-al distance x, the functions 
# 

Ü and W are of the same order. Since (7-11) and (7.12) 

contain the large parameter m, tnen at such distances the 

different field components will not be of the same order; 

the electrical field will be aliwst horizontal and the 

magnetic field almost vertical (ehe ratio of "small" 

components to "large" will be of the order of l/m). However, 

in the region of deep shadow W will decrease faster than U. 

Indeed, the decrease of these functions is characterized by 

the factors 

ixx 
(for W) and e 

iXT- 
(for U) 

where T° and T, are the roots of the following equation 

which have the smallest moduli: 

W{(T°) - q^tj) - 0,  W;(T^) - qW^) = 0 

For soil with good conductivity we may set q = 0; 

q-, -  co whence 

T° « 2.J58 e 
iTT/3 1.019 e iV3 

so that the imaginary part of T° will be larger than the 

imaginary part of x->.    The same relation holds in the 

general case, because |q1| is always much larger than |q|. 

Therefore the attenuation of W will occur more rapidly than 

the attenuation of U, and for sufficiently large x, the 

terms comprising U can, in spite of the small factor l/m, 

predominate over the terms comprising W. This denotes for 

the electrical field a constant transition from horizontal 

to vertical polarization (with the reverse transition for 

the magnetic field). 

(25) 
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IX.  PRESNEL DIFFRACTION FKOM CONVEX BODIES 

V. A. Fock 

The method of approximation based on Huyghens1 principle 

for computation of the diffraction permits us, as is well known, 

to determine the field of a wave which is diffracted by a thin 

opaque screen. This field is expressed by Fresnel's integrals. 

However, in the case where the diffracting body has a 

finite curvature (radius of curvature large with respect to 

wavelength) the problem of an approximate determination of 

the field in the region of the geometrical shadow boundary 

at large distance from the body has been unanswered up to now; 

in particular it could not be clarified whether in this case 

the same expressions for the field (the Fresnel integrals), 

with which one starts in analogy to the case of an infinitely 

thin screen, are applicable. In the following paper we show 

in the example of diffraction from a sphere, that also for a 

body with finite curvature the main term in the expression 

for the field behind thi3 body is given by the Fresnel integrals. 

This term does not depend on the material of the body (in the 

same way as in the usual Fresnel Diffraction). To the main 

term there is added here an additional term, which constitutes 

a sort of background, above which the Fresnel zones lie. This 

additional term (and with it the background) depends, on the 

contrary, on the electrical properties of the body from which 

the wave is diffracted. 

I i 

1. Formulas for The Attenuation Factor 

We start out from our formulas for diffraction, which were 

developed in our paper [lj . We have to summarize here the main 

results of this paper. 

(1) 

i, 
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The field of a light point source (dipole), located at some 

distance from the surface of the sphere, is given by two functions 
U and W, which represent solutions of the wave equation. 

AU + kcU 

and becomes singular at the source-point ifi>such a manner that 

ikR 
U + IT (1.02) 

Where R is the distance from the source and U remains finite 

for kR—>0. 

The equations defining U, W differ in the form of the 

boundary conditions, which we are not going to discuss here. 

Let r, 6, <t>  be polar coordinates with origin at the center 

of the sphere, and axis in direction of the dipoie. The quantity 

s ■ a©, where a is the radius of the sphere, gives the distance 
from the source to the observation point, computed on a large 

circle. The height of the source above the sphere is denoted 

by h,, the height of the observation point - by h_. Further 

we introduce the parameter 

m ka 
2 (1.05) 

which we assume large, and let 

x « 
2a^     a 

kh. 
m 

kh, 

m 

(1.04) 

(1.05) 

(2) 
mm 
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I 

The complex dielectric constant of the material of the sphere 

we designate by TJ, and assume |TJ| » 1. Finally we let 

q 
im 

JTT-r ; im fr (1.06) 

In our paper we showed, that in the vicinity of the surface 

of the sphere (that is, at distances small compared to its 

radius), the functions Ü and W are to be expressed by an 

attenuation factor, in accordance with: 

.iks 
U = ,     u • V (x,y ,y«,q) 

^Jsa sin |        * 2 
(1.07) 

kiks 
W = 

^jsa sin -| 
f . V (x,yi,y2,qi) (1.08) 

*« 

The attenuation factor V may be represented for y. < y„, by 

the contour integral: 

-i w r 
V (x,yi,y2,q) s e  * J|" ixt 

cXAU P(t,y;L,y2,q) dt ,   (1.09) 

where the function P may be written in the form: 

F «w,(t - y2)   fv(t - y,)  - v|(t)  - qv(t) (t 
1 \ X        wx(t)  - qWl(t)      1 - yi} 

or in the form: 

F-i ^(t-yj) J«2(t y,)-^2 
w0(t) - qw 

(1.10) 

w1(t) - qw $*<>■ 4 
(3) (1.11) 
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Here w,(t) and w„(t) are the complex Airy-functions, which 
represent solutions of the differential equation 

w"(t) m tw(t) (1.12) 

and which tend for large negative t asymptotically to the 
following expressions; 

1 , %   11, - i  11 (- t)V2 
w^tj^e * ( - t)  * e ->        , 

-ij - |  -i | (-t)3/2 
w0(t)~e  * (- t)  4 e  ? 

►(1.13) 

In the formula (l.lO^ there appears also one of the functions 
u(t), v(t), which are defined by the equations 

Wl(t) *u(t) + lv(t) ; w2(t) »u(t) - iv(t) (1.1*) 

For t real both functions u{t), v(t) are real. For all values 
of t we have: 

wi v*3/** 
a 

w0(t) ; wi Vte 3 / Ä 
7T 

2e ° v(t) . 

(1.15) 

The contour C of the integral (1.09) encloses in positive 
direction the first quadrant of the complex variable t (in this 
first quadrant all the poles of the integrand are located). 
We can choose for contour C a broken line, which goes from 

oo e '  to 0 and from 0 to oo . 

(*) 
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2. Reformulation of The Attenuation Factor 

In our previous pages fl, 2jwe investigated the attenua- 

tion factor V, first in the illuminated region, where the 

formula of reflection, corresponding to geometrical optics 

holds -t  second in the shadow region, where the amplitudes of the 

field decay exponentially, and finally in the transition region 

(region of half-shadow). The region of the shadow-cone was 

not investigated, and it is the purpose of the present work 

to derive approximations for this region. 

The shadow cone is that cone, tangent to the sphere, whose 

apex is the source point. The equation of the shadow cone may 

be written in the form 

-Jb2 - a2 + Jr2 - a2 = ^|r2 + b2 - 2rb cos 0 , (2.01) 

or, after transition to the variables x,y,,y2, and neglect of 

small quantities: 

pl+ -FT (2.02) 

Thus, we have the task of investigating the attenuation factor 

V for the case, where the quantities x^^yp are very large, 

but the differenc'. 

i  «x- Jy7- Jy^ (2.03) 

remains finite. We note that the shadow region corresponds to 

positive values of 4, the illuminated region to negative values 

of i. 

(5) 
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Under the integral (1.09) for V we may substitute for P 

one of the two expressions (1.10) or (1.11), which are identical. 

We decompose the contour C of the integral (1.09) into two 

.2*1 segments: that from coec"x to 0 we denote C-,,  that from 0 to 
00- C«. On the first segment we use for P the expression (1.11), 

on the second segment the expression (1.10). Then we may write 

V-* + f , (2.04) 

where 

* = [JV
1 "* J i Aixt M J2e      <h J *    »1 

L cl 

. I öixt 

(t - y2) w2(t - yx) dt + 

(fc - y0) 
v(t - Yi)  dt 

(2.05) 

¥ .ixt w2(t) - qw2(t^ e "" ""7^ "TTT wi(t " yi} wi(t " y2
J dt * w1(t) - qw1(t)  

x 1      1 * 

f eixtv^t? -qv(t)    (t. 
*J      wx(t) - qw1(t)  

1 
yx) w2(t - y2) dt 

(2.06) 

» 

The integrals which enter into * do not depend on the parameter 

q, which appears only in ¥. Consequently, <b does not depend on 
the electrical properties of the diffracting body; they influence 

only the quantity f. We see that ♦ corresponds to the Presnel 

(6) 
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portion of the diffraction and If to the background, on which 

the Fresnel Diffraction term is superimposed. 

i 

5. Computation of Tne Integral ♦ 

In the expression (2.05) for ♦ we may replace the Integra-  *« 

tion over C, by an integration from - ao to 0. Using the 

relation wgs w., -  fiiv we obtain: 

<J> - «^ + <J>2 , (3.01) 

where 

-co 

eixt W]L(t - y2) wx(t - yx) dt , (3.02) 

» +co 

-co 

lxt   ttr. 
e   w, (t y2) v(t y2) dt (3.03) 

F.rst we compute the integral 4>g. For this purpose we make 

use of the following integral-representation for w1(t - yg): 

w-,(t - y0) = 47" 
3  (t-y ) z - \  z3 

e ^ 

<U 

dz , (3.04) 

r 
Where the curve f"~ consists of the segments from -i co to 0 

and from 0 to flo. We note that on the curve f"~ we have: 

Rez fc> 0. Substituting (3-04) and (3-03), we can carry thru 

the integration over t with help of the formula: 

(7) 
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+ oo 
j   i 
t   i 

if »Pi! 
■im 

j==      J      e(z + **>* v(t - yx) dt -expjy^z + Ix) + ^ (z + ix)3 

- oo *• „ rteN , (3.05) 

which hoi 3s for Rez >/' 0.    Thereby we find 

4>, «JFe"
1^ e-5*

5 + i**l,  f eixz^ . (x2 + 72  . yi)z dz 
P (3.06) 

The latter integral is easily computed, and we obtain finally 

*2 = e
iü>^ , (3.07) 

with 

o)(x) « - — x^ + I x (y1 + y2) + — fo (3.08) 

As we showed in our paper PlJ , the quantity to is the phase Of 

the incident wave, and we have approximately: 

CD • k(R - s) , (3.09) 

S i'H i- 
1   «J i where R and s designate the same quantities as in Section 1. 

Thus the integral *2 corresponds to the incident wave. 

We now pass to the evaluation of the integral *.. Using 

the integral-representation (3.04) for both factors w,(t - y«) 

and w^t - y^ we arrive, carrying out the integration over 

t, at a double contour integral, for which one integration may 

be carried thru after a change of variables. Thereby we gets 

(8) 
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(5.10) 

Where the contour C comes from positive imaginary infinity, 

intersects the real axis to the right of the point z »x, 

and then proceeds along the ray arc z s - | . 

The value of the integral (3.10) at the point z = x is 

according to (3.07) equal to the quantity 4>„. Therefore, we 

get, if we denote by C\  a contour, which is similar to C, but 

cuts the real axis to the left of the point z m x. 

* *1 + $2 
= ^ J. >(z) 

Jz~(z - x) 
(3.11) 

By means of this formula we can express the function * 

approximately by means of Fresnel's integrals. To this purpose 

we make use of the saddle-point method, where we note, however, 

that the ratio  is not a slowly-varying function. If we 

equate the derivative of the phase o>(z) to zero, we arrive at 

the equation: 

z4 - 2z2 (y2 + yg) + (y1 - y2)
2 - 0 , (3.12) 

which has roots 

i 

2 ä± Jy-L *$2 ■ (3.13) 

Of these four roots only the largest positive one is interesting: 

zo=Jy7+Jy2~' 

(9) 

(3.14) 
t 



n- ' 

J : 
■■'' ! 

ifj : I 

til 

242 

Since it lies closest to the contour C. We call C„ 
i o 

a contour which resembles C and C , but cuts the real axis 

at a point z « z . Using the relation (2.03) we set 

x - z0 - x - 4*1 - 4^7 -e (3.15) 

If i < 0,  the contour C is equivalent to C and the integral 

over it yields $,. If | > 0, then the contour C is equivalent 

to C and the integral over it yields *. 

Near z » zÄ we have o 

co(z) « CD0 - u.2(z - z0)
2 , (3.16) 

with 

CO. « a>(0 +-yi
5/2 +-y2

5/2 , 
3 i    3 2 (3.17) 

2^ Jyl% 
M- =• 

for an approximate evaluation of the integral 

,ia>(z)    dz 

27Ti X 4z"(z - x) 

(3.18) 

(3.19) 

We replace the quantity J~z~by the constant value J z and 

the function CD(X) by the expression (3.16). If we set 

-i TT 

z m z0 + pe ~< , (3.20) 

(10) 
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Then we can integrate over p from - ooto ■♦■ co .    Thereby we 
get 

+ oo 

-   00 

2 2          dp 
'* p       -* .   (5.21) IT 

p - le 
»« 

The latter integral is expressible in terms of Fresnel's 

integrals, where for i  > 0 and £ < 0 it has different analytic 

forms, namely: 

A 

+ co 

™  J 
- CO 

"M- P 
2 2    dp 

P - £e 4 

f(l4) fur ft > 0 ,    (3.22) 

- f (- M  für i  < 0 ,(3.23) 

with 

f (a) = e 

One sees easily, that 

-io2 - '   * 
co 

M    JL    f iac 

e        da. (3.24) 

f(a) + f(- a) « e -io' (3.25) 

If we introduce the usual Presnel Integrals 

a 

C + i S 

0 

we may write 

•si e        da, 

(ID 

(3.26) 
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f(o) = _ 1 -la2-l | 

48" 
(§-c) + t(l-s) 

J 
.  (5.27) 

The asymptotic expression for f(a), which holds for large 
values of a, is 

(a) a —-= e    ( <* +  .   . . ) 
2 J¥      \ a  2a^      J 

(3.28) 

If one expresses the integral I by f(ct) and remembers that 
this integral represents, for £ > 0 the function <&, for i  < 0 
the function *,=*-*„ defined by (3.07), one obtains 
finally: 

« s -  -£= e ° . lif(nt) 

15*1*2 
(for 4 > 0) , (3.29) 

. / v    |x    ico 
- -MX) - TTp= • ° • M<f (- Mi)     (for i  < 0) .  (3.30) * = e 

^ 

These expressions hold under the condition that |y, and lyg 
2 are very large (the quantity u. is of the order of the smaller 

of these numbers). The quantity £  may be regarded as finite 
and small, the product g£ may be an arbitrary (large, finite 
or small) number. If <• is very small (and it may have arbitrary 
sign), then both expressions for * practically coincide. This 
follows from the equations of approximation: 

Mil   if 
£===;■ 1   +     "  Jy^ Jy7  +J7; 

* l , 

0)(X)   * 0>0   -   \L2   i2 

(12) 

(3.3D 

(3.32) 
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in conjunction with the formula (3.25). For % - 0 the two 

expressions for * coincide exactly. 

i 

4. Evaluation of The Integral 

We turn now to the result of the approximation formulas 

for the integral 1. We first inquire about the value of the 

integral for that case, for which we have computed the value 

of the integral *, namely for the case where the quantities 

JyT , ly-~ (and with these also u. ) are very large, while 

| » x - [y7 -Jyg remains finite. Under these conditions that 

portion of the contour of integration, on which the variable t 

is finite, yields the principal part. For finite t, and y1 and 

y_ large, the product of the function w. and the exponential 

appearing under the integral in (2.06) equals: 

i    icu    i£t 
elxt W;L(t - yx) wx(t - y2) « _-_ e ° . e ixt 

^ 

k'$-0)] (4.01) 

Where for the sake of brevity we used the relation (3.17). 

If we substitute this expression into the integral ¥, 

we obtain: 

¥ = - 
ia>. 

g(0 - 
4u 

■"(« (4.02) 

1 
(13) 
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Iff i 

II 

where 
7T 

■(e) - -JL ex* 
-FT 

i       I    i{t      »g(t)  - qw (t) 
3       /  e —j——. — At  + 
'      ' w^t)  - qWl(t) 

lln 
oo   e 

CO 

PeHt    vt'(t)  - qv(t) 
J w2(t)  - qw1(t; 

dt (4.03) 

Making use of the properties of the Airy function (1.15), 
we see immediately,  that with 

«    27T 

t « t» e (4.04) 

there follows 

i -I IX 
1 wg(t) - qwg(t) _  v'(t') - qe f  y(t') 

2 w^(t) - qWl(t) 4  <-  —, 

Wgft') - qe 5  w2(t') 

(4.05) 

Substitution of (4.04) converts the first integral in (4.03) 

into an integral over the positive-real axis. Omitting the 
prime on t, we get: 

g(0- e '1I5    JL    A    *~ "   2   ^+i)        v'(t)  - qe    3 * v(t)    dt + 

w2(t) - qe 
ilTT 

Mi   yeiet t v^jt) = q(t)    dt > 

0 
wx(t) - qwx(t) 

(14) 

3     w0(t) 

(4.06) 
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The function v(t) in the numerator decreases rapidly with 

increasing t, while the functions w1(t) and wg(t) in the 

denominator increase as rapidly. Therefore, both integrals 

converge very rapidly, and may be evaluated by quadratures. 

The function g(£) may be developed in a Taylor-series in i; 

the coefficients of this series may also be evaluated by 

quadrature. For large, positive i  the function g(£) has 

asymptotic behavior: 
TT 

g(0 
24T 

1 
•I' (4.07) 

i.e. of an expression, which no longer depends on q. The 

remainder is of order e1^ where t1 is the first root of 

the equation 

*l(t) - qw1(t) -0 (4.08) 

For large negative %  the asymptotic expression for g(£) has 

the form: 

7T 

r-r- Q  + i 4 -A ic 

(4.09) g(0- 

1 f     ,  r—r  Q + i 4  - Y5 42 
. _ + a—i . -,  

2-JTT q - 1 

If we substitute this expression in (4.02), we have to remember, 

that this formula for I  applies only when the correction term, 

which contains p. in the denominator, is small compared to tte 

main term. Necessary for the applicability of like expressions 

(4.02) and (4.09) is the condition 

1 « i2  « n   (i  < 0) (4.10) 

(15) 

1 
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5. The Attenuation Factor in The Region of The Shadow-Cone 

In the preceding paragraph we found approximate expressions 

for the integrals * and V,  whose sum yields the attenuation 
factor V(x,y,,y2,q). Forming this sum, we obtain for %   }  0. 

V = 
icu. 

4yly2 

and for £ ^ 0 

i ixf M)  - qU)  +—5 W(«)l 7     J 
(5.01) 

V s e 
io>vx)   J7 iü>_ 

!K* 
(5.02) 

These expressions are valid under condition, that the parameter 

u., which is determined from the equation 

2_ -Jyl y2 
H = 

is very large, while the quantity 

(5.03) 

(5.04) 

is small or finite. 

Let us return to the geometrical meaning of these quantities. 

According to the formulas (1.03) to (1.05) we have: 

*-J 2£ a 
JhTi 

' $1+ -F ' 
i = —s <■ - J^i - -f5^' • -^2a 

(5.05) 

(5.06) 

(16) 
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These large values of u. correspond to short wavelengths and 

are relatively large distances from the surface of the body 

(the latter should still be small compared to its radii of 

curvature). The quantity £ is proportional to the distance 

taken along (more exactly, parallel to) the surface of the 

body, from the boundary of the geometrical shadow (the shadow 

cone). For %  < 0 the magnitude u | is approximately equal 

to the phase difference between the incident and reflected 

waves. The value % * 0 corresponds to the boundary of the 

shadow, positive correspond to the shadow, negative | to the 

illuminated region. 

Our formulas give the transition between light and shadow 

at relatively large distances from the surface of the body. 

Since the functions f and g and their derivatives with respect 

to their arguments are, for finite values of these arguments, 

of order 1, the term u.f(n£) yields the main term in (5.01) 

for large values of \i.    This term is proportional to the Fresnel 

integral. It represents a rapidly-varying function of Z,  since 

the argument of the Fresnel integral is n£, where u. is a large 

number. Thus the main term in the expression for V yields the 

Fresnel diffraction. On this diffraction pattern there is 

superposed an intensity which is represented by the function 

g(£) and is slowly varying in comparison with the main term. 

This "background" depends on the material of the diffracting 

body (since g(£) depends on q), while the Fresnel term is 

independent thereof. 

The expression derived here for the attenuation factor 

should reduce, as going further away from the shadow cone in 

both directions, to the previously derived formulas for the 

shadow and the illuminated region. We check this: in the 

shadow zone we have to have an exponential amplitude decay, 

in the illuminated region — the reflection formula. 

*« 

(17) 
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Since we neglected in the formula (5.01) and In the asymptotic 

expression (4.07) for g(£),  terms which decrease exponentially 

for large position i,  we should get zero in our approximation 

in the shadow zone. Actually we get from the asymptotic 

expression (3.28) for the Presnel-function f(a)r 

7T 

uf(nO = 
2-J1T 0*i??) 1.5.07) 

On the other hand, the formula (4.07) yields: 

i w 

g(0 - A S"(« ■ -f= e J . (i - -§-3^ 4^           24* v   2n2 ry 
(5.08) 

That is, the same expression. Thus for large positive £ the 

expression (5.01) for V actually tends to zero in our approxima- 

tion. 

Now we consider large negative values £. In the formula 

(5.02) the first term of the asymptotic expression (4.09) 

for g(|) cancels against u.f(- u.£), the second terms (which 

contains the exponential function) yields: 

V = e ico(x) 41 iCD. 

K 2 

q _  2 e 12 * 
q - i 4 

. (5.09) 

On the other nand, in the illuminated region the reflection 

formula 

.2 
io> 

■( 

1 _ q - *p 
1 q + ip 

2ip1p' 

) 
(5.10) \ p + Px 

holds, as shown in our previous paper [l]  [the formula (4.31) 

of that papery . There CD = oo(x), and the quantity p (which is 

proportional to the cosine of the angle of incidence) is 

defined by the equation: 

(18) 
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yx + p
2 + Jy2 + p

2 = 2p + x (5.11) 

and for p., we have 

px s 2p + x - - (y1  + y2) (5.12) 

To the approximation in which formula (5.09) holds, we have 

.2 
P—  _ Ja. a.   a I,-, as — ■»  . 

2  ,<: 2    2 ' 16 M. 
(5.13) 

px ä 2 u
& + 4 
2 • * . 2 u I _ „ ..2 »2(1 (5.14) 

If we vse  these approximate equations, we see easily that the 

formula (5.09) gives just the approximate form of the equation 

of reflection (5.10). 

Thus, the formulas (5.01) and (5.04), which were derived for 

the region near the shadow cone, reduce to those formulas which 

hold in the regions adjoining this shadow cone on both sides, 

and which were derived in our previous pages. 

In conclusion, we make the following remarks about the 

formulas derived here. 

In the same manner as the starting formulas for V, also 

the approximate formulas admit of transition to the case of 

a plane wave at suitable change of the expressions for the phase 

of the Incident wave. This transition consists in letting x and 

fy~ tend to infinity, while keeping their difference finite. 

As was shown in our papers [2] and \~5~\ ,  our starting formulas 
are valid in the case of a plane wave not only for a sphere, 

but also for a body of arbitrary shape. Therefore, we may 

regard the approximation formulas derived here, which contain 

the Fresnel integrals as special cases, as proven also for a 

(19) 
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body of arbitrary shape. It is also very probable that the 

diffraction pattern found here (a Fresnel diffraction, super- 

imposed on a background) is valid, at least qualitatively, 

also in large distances from the body. One may, therefore, 

expect that the intensity of the background decreases with 

increasing distance from the body. 

:1 
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X.  FRESNEL REFLECTION LAWS AND DIFFRACTION LAWS 

V. A. Fock 

In 1821, the French scientist Fresnel established formulas 

determining the intensity and direction of oscillations in re- 

flected and refracted rays of light incident on the plane sur- 

face of a transparent body. 

Fresnel obtained his formulas on the basis of the elastic 

theory of light under the assumption of the transverse oscilla- 

tions of the elastic medium (ether) where he was obliged to 

introduce special hypotheses on the elasticity and density of 

the ether in media which differed from each other by the index 

of refraction. This derivation does not correspond with the 

modern view on the nature of light and has only historical 

interest at the present time. However, the formulas themselves 

were justified brilliantly by experiment and, later, as touch- 

stones for the verification of the whole new theory of light. 

In 1865, the electromagnetic theory of light, created by 

Maxwell, appeared, which would sustain this verification and, 

moreover, would give an explanation of an unusually wide circle 

of phenomena including those which wore detected many years 

later ruch as: radiowaves (Hertz, Popov), light pressure 

(Lebedev) and many others. 

The Fresnel reflection laws emerge from the Maxwell equa- 

tions and the appropriate boundary conditions without any 

additional hypotheses, v/here it appears that the transverse 

oscillations analyzed by Fresnel must be understood as the 

oscillations of the electric vector. 

The Fresnel laws are applicable not only to light but to 

electromagnetic oscillations of any frequency, including radio- 

waves. On the other hand, the Fresnel laws are generalized 

4 I 
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easily to the case when the waves fall on the plane surface of 

an absorbing body. The Fresnel formulas retain their form, 

with this sole difference, that the index of refraction n' 

must be replaced by a complex quantity; namely, the square root 

of the complex dielectric constant of the medium. 

The Fresnel formulas permit the direct expression of the 

amplitude of the electromagnetic field of the reflected wave 

through the amplitude of the incident wave field, where their 

values on the reflecting surface are understood to be these 

amplitudes. If a plane wave falls on the surface, and if the 

reflecting surface itself is a plane, then the reflected-wave 

field amplitudes at a certain distance from the surface will 

be the same as on the surface Itself; only the phase will depend 

on the distance from the surface. If the reflecting surface 

is convex, then the incident, parallel beam of rays becomes 

divergent after reflection. In such a case, when calculating 

the reflected-wave amplitudes at a given distance from the 

point where the reflection would occur, it is necessary to 

introduce a correction factor into the amplitude which would 

take into account the beam spreading after reflection. This 

factor can be found from purely geometric considerations. 

The electromagnetic-wave reflection laws are very simple 

and convenient for the approximate formulation in Fresnel 

formulas. It is a much less satisfactory matter in the case 

of the approximate formulation of the diffraction laws; i.e., 

the enveloping of an obstacle by the wave and its entrance 

into the geometric shade region. All the known until very 

recently approximate methods refer to the case of wave 

diffraction from an obstacele with sharp edges, for example, 

from an opaque screen with orifices. Basically, these methods 

are refinements of the Huygens principle. The principal step 

in this direction was made by Fresnel himself. According to 

the Huygens principle in the Fresnel formulation, part of the 

light wave covered by the screen does not act at all, but the 

'fill! 

! M 8 
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uncovered regions act just as though there were no screen at 

all. A further Improvement was made In 1882 by Kirchhoff 

who proposed a formula for the amplitude of light waves out- 

side a screen. The Kirchhoff-formula is a very flexible and 

convenient means of solving approximately the problem of 

diffraction from a screen with sharp edges but it does not 

take into account the influence of the screen material and, 

in general, does not take the limit conditions for the field 

which result from the Maxwell equations, into account. 

The next substantial step in the solution of the diffrac- 

tion problem from a screen with sharp edges is related to 

the finding of rigorous solutions to the Maxwell equations 

for certain particular cases (half-plane, wedge). Here tu ■ 
work of Sommerfeld should be mentioned and also the work of 

S. L. Sobolev and V. I. Smirnov, who approached the problem 

from a new point of view (nonstationary process). The 

extremely interesting prollems of the plane and cylindrical 

waveguides with open ends (where the diffracted wave can be 

sent backward) were solved recently by the young Soviet 

scientist L. A. Vainshtein. 

In contrast to the problem of diffraction from bodies 

with sharp edges (screens and diaphragms), no general 

approximate methods or approximate formulas (similar to 

the Kirchhoff formulas) have been proposed to solve the 

problem of diffraction from bodies with continuously varying 

curvature, to the present time. In order to find the field 

obtainable because of the diffraction of the incident wave, 

it was proposed to solve the Maxwell equations with the 

limiting conditions for each separate case, which is a very 

complex mathematical problem. 

The Presnel reflection formulas are integral laws in the 

sense that their use does not require the solution of the 

differential equations because these formulas give explicit 

expressions for the reflected wave amplitudes. Not only was 

(3) 
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the form of the appropriate integral law not known for the 

phenomenon of diffraction from bodies of arbitrary shape, 

but the fact of the existence of such a law was not established. 

In other words, the possibility was not established of writing 

explicit expressions for the field amplitude of waves bending 

around a body under any general assumptions of the electrical 

properties of the body material and on the shape of its surface. 

To a known degree, this gap was filled in our works on 

the diffraction of plane waves from the surface of a convex, 

conducting body of arbitrary shape. 

The assumption that the body material is a good conductor 

is essential because it affords the possibility of using the 

simplified, boundary conditions for a field which M. A. Leon- 

tovich established. 

Considering the field near the body surface (at distances 

which are small in comparison with the radius of curvature of 

the surface), we established that this field has local character 

in the penumbra region. This means that the field in the 

penumbra region for a given incident wavelength, amplitude 

and polarization, depends only on the shape and properties of 

the body near the given point, where it is expressed through 

certain universal functions which can be tablulated once and 

for all. Hence, it appears to be possible to formulate certain 

general diffraction laws thereby. 

Our formulas for the field can be considered as a generalisa- 

tion of the Fresnel formulas - a generalization whioh includes 

both the reflection and the diffraction laws. 

Let us move, mentally, along the surface of a body from 

its illuminated side to the shade. The incident and reflected 

waves can be differentiated on the illuminated side, where the 

latter will be described well by the Fresnel formula. Hear 

the geometric boundary of the shade, in the region of oblique 

incident of the ray, both waves are already inseparable from 

each other so that only consideration of the resultant field 

(4) 
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has meaning. Here, our formulas become valid while the Fresnel 

formulas become Inapplicable. We do not have waves of more or 

less constant amplitude beyond the geometric shade boundaries 

but we have a damping wave, i.e., a wave with amplitude decreas- 

ing exponentially as the distance from the geometric shade 

boundaries increases. Here, the diffraction phenomenon occurs 

in its proper sense, where the diffraction law is transformed 

by our formulas. 

From the above, it is clear that a region exists (namely, 

the region of oblique ray incidence) where both our diffraction 

formulas and the Fresnel formulas are correct simultaneously. 

Evidently, one formula must transform into the other in this 

region. 

Later, we will cite the Fresnel formulas for an electro- 

magnetic field and we will give their generalization which 

permits taking into account the broadening of the beam after 

it is reflected from a convex body. Furthermore, we will 

write the diffraction formulas we obtained, we will analyze 

their limiting case and we will trace how they transform into 

the Fresnel formulas in the region of oblique ray incidence. 

Fresnel Reflection Laws 

Let us denote the amplitudes of the electric and magnetic 

vectors of an incident wave at a given point of the body sur- 

face through 3°(EJ,E°,Ep and $£>H°,H£). Let us denote the 

corresponding quantities for the reflected wave through 

3*(E*,Ey,E*) and 3*(H*,H*,HJ) . Furthermore, let a(ax,ay,az) 

be the unit vector in the incident ray direction and let 

a (avJay>0 be the unlt vector in the reflected ray direction 

and let n(nv,n ,n ) be the unit vector normal to the body sur- x y z 
face at the incident point. According to the reflection law, 

-*m 
the a , a and n are related thus: 

a** - a* Ä 2n(a-n) (1.01) 

(5) : 

1 
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where 

i * 

1 » 

■+*■♦_-*-*•     « a «n = -a«n s cos 9, (1.02) 

where 9 is the incident angle. The a and a* are proportional 

to the gradient of the phases of the incident and reflected 

waves. Considering the amplitude to be a quantity which varies 

slowly in comparison with the phase, we obtain from the Maxwell 

equations for a vacuum: 

[a x E°] = H°; a-E° = 0 , 

from which 

[a x H8J = - E°; a-H° - 0 , 

and similarly for the reflected wave: 

[a*x E^J = H*;   a*-E* = 0 , 

[a*x HJ -  -E*   a*-H* = 0 . 

(1.03) 

(1.04) 

(1.05) 

(1.06) 

Let us denote the magnetic permeability through u., the 

complex dielectric constant of the substance of the reflecting 

body through: 

TJ * € + i 47Tg 
(1.07) 

and let us introduce the Presnel coefficients: 

f      SJ 

s  4 

1 f 

n 
i 

Mi 

N Tl COS   0   -   -> 
5  " (iTj - sin ö 

TJ cos   9  +  ^  2~   ' M/q - sin 9 

N p. cos  9 -  4 M-T) -  sin 9 

H cos 9 + J \ir\ - sin*9 

(6) 

(1.08) 

(1.09) 



Then the Fresnel formulas establishing the relation between 

the amplitudes of the incident and reflected waves can be written 

thus: 

(n-E*) = N(n-E°) (1.10) 

(n-H ) = M(n-H°) 

The amplitudes of the transmitted waves (penetrating the 

substance of the body) are not of interest and we will not 

write the corresponding formulas. 

Equations (1.05), (1.10) and (l.ll) can be solved with 

respect to the E and H vectors. Introducing the notation: 

n-E° - E° ;  n-H° = H° (1,12) 

and expressing a* through a according to (1.01), we will have 

sin2 0E* = NE°(n cos 26  + a cos 9) + MH° [n x a] , (1.15) 

sin2 6H* = - MH°(n cos 20 + a cos 6)  - NE° [n x a] . (1.14) 

Such are the amplitudes of the reflected waves on the 

body surface which result from the Fresnel formulas. 

Relations for the total field can also be derived from 

the preceding formulas. Denoting the total field on the body 

surface through E and H and their normal components through 

E and H and assuming: n    n ° 

«•I 1 - sin
29 

(1.15) 

we will have: 

.2 sin e(E - nEn) = xj\     En {a " n(*-«)} + Hn [
n x a] > 

(1.16) 

(7) 



"     • 

260 

It 

sin2 0  [n x H]    = En -[a - n(a-n)} +    x ]J \ Jn x a] . 

(1.17) 

If   JTJH I >> 1,  then x = 1 approximately and the right side 
of (l.l6) and  (1.17) are mutually proportional.    In this case: 

E"nEn ='JT [nxH]  . (1.18) 

The last relation already does not contain the vector a, 

i.e., is independent of the incident wave direction. As shown 

by M. A. Leontovieh, it holds not only in the illuminated regio: 

where the Presnel formulas are applicable but on the whole body 

surface . 

The following relations can also be derived from (1.16) 

and (1.17): 

(a 

(a 

.1) . (-cos0+X Jf)\  , 

•H) = (- cose + x JlQHn ' 

(1.19) 

(1.20) 

if 

If the incident wave is plane so that the vector a has a 

specific value, then the last relations can be used instead of 

the Leontovich conditions (l.l8). This is convenient when 
p 

oblique ray incidence Is considered where sin 0=1 can be 

substituted for x In (1.15). 

2. Cross-Section of a Beam of Reflected Rays 

In order to find the amplitude of the reflected waves at 

a certain distance from the body surface, it is necessary to 

have formulas for the cross-section of a beam resting on the 

dS area of the body surface, having traversed the given path 

s after reflection. These formulas can be derived from well- 

known . formulas of differential geometry, 

(8) 
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Let the equations of the reflecting surface be: 

x - x0(u,v); y = y0(u,v); z  = *0(u,v) , (2.01) 

where u,v are the Gaussian coordinate parameters. The square 
of the element of arc on the surface can be written thus: 

di2 = guuau
2 + 2guvdu dv + gvvdv

2 =/%uvdu dv ,  (2.02) 
u,v 

where the sum ^      Is a shorthand notation for the middle term 

u,v 

of this equality. 

We will use notations for the covariant and contravariant 

components of the vectors and tensors, by raising and lowering 
the signs using the 'metric' tensor which enters Into (2.02). 

We will write the surface element thus: 

dS = Jlfdu dv . (2.03) 

Let us write the formulas for the vector components normal 

to the surface and for their derivatives with respect to u,v. 

We will have: 

,=■„ =!!a^£.!^!!o  etc.       (2.04) 
*J  x  fin 3v Bu 3v   Bv du 

i 

d 

3 3v 
etc. (2.05) 

The last formula can be used to define Gv - the mixed 

component of the second qua :ratic form of the surface. If 
R. and FL are the principal radii of curvature of the normal 

cross-section of the surface, then we will haver 

(9) 
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! 
K ,  1  = GU GV - Gu GV , R,Rp  wu v  wv u ' (2.06) 

1 + 1 - 
RY  R2 . G = . Q

u - GV u   v (2.07) 

The quantity K Is the Gaussian curvature of the surface. We 
will require the formula for the R radius of curvature of a 
normal cross-section of the surface by the plane of the 
Incident ray. It can be shown that if k^ is the phase of the 
incident wave, where 

(grad i>)2  = 1 , (2.08) 

then 

X 
u.v 

guv _!o!!or sln2 91 

du 3v 
(2.09) 

wh^re 9 is the incident angle and the derivatives are taken 
at the ^ s V0 values of the phase of the body surface. The 
quantity R is then determined from the equality: 

ZGuv ^o^o s 

Bu dv 
sin2 e (2.10) 

u,v 

Let us use the formulas written here to calculate the 
normal cross-section of a beam of rays reflected from the dS 
surface element. 

Let us consider the equations: 

x * xo + sax ' 

y « y0 + say , (2.11) 

o   z 

li 
(10) 
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in which s is a certain given quantity and x .y_,z ,a ,a^,a, o o o x y z 
are functions of u,v determined from the equation (2.01) of 

the surface and from the relation: 

a* = a - 2n(a«n) , (2.12) 

where n is the normal vector at xÄ,y .z^ o o o 

Evidently, s is the path traversed by the beam after 

reflection. For constant s, (2.11) are the equations of a 

certain surface parallel, in a known sense, to the reflecting 

body surface. If we weVe to vary u,v between (u,u + du), 

(v,v + dv), we would obtain a certain section of the surface 

(2.11). This section can be considered as the cross-section 

of a beam of reflected rays resting on the element of the 

surface dS = -4~g du dv . In order to obtain a normal beam 

cross-section, we must project this section onto a plane 

perpendicular to the reflected ray. Denoting the area of 

the normal section through D(s)dS, we will have 

D(s)dS = 

from which: 

D(») : 

JT 

a* a* a* x  y  z 

Bx cV Bz 

3u "du du 

Bx dy Bz 

Bv Bv Bv 

a* a* a» x  y  z 

Bx By Bz 

du Bu Bu 

Bx By Bz 

Bv Bv Bv 

mi 

du dv , (2.13) 

(2.14) 
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We calculate this determinant under the assumption that 

the Incident wave Is planar and that, therefore, the vector 

a Is independent of u,v. 

After sufficiently complex computations, which we omit 

here, the following result is obtained: 

D(s) = cos 9 + 2s (- G + Q Y*  «UV Tf J^  " y^ 

u,v uv 

auv ^o lüo V w 

ou  dv / 
cos 6  . (2.15) 

! 
Using (2.06) - (2.10) cited above, we can write: 

D(s) = cos 0 + 2s [te+*D „«=2 0   .  sin2 e 
COS      0   +      ' „ 1 + ^ j ^ 4s' rr- cos 0 , 

(2.16) 

where the values of R ,R,,R2 are taken at the point where 

reflection occurred. 

D(s} Evidently, p)Q< yields the beam broadening, i.e., the 

ratio of this cross-section at the distance s from the surface 

(we measure along the ray) to the cross-section at the surfrce 

itself. 

1 \i\ 
ii'li m 

3. Electromagnetic Field of the Reflected Wave 

Let the field of the incident plane wave equal: 

E"e PTV 

where E° and H° are constant amplitudes and 

4> - k^ - k(xax + ya + za2) 

is the phase of the wave at this space point. 

(12) 

(5.01) 

(3.02) 
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Introducing the value 

<b   z kit   = k(x a + v a +za) *o   *o   v o x  'o y   o z' (3.03) 

of the phase $  on the body surface, we will have for the 
incident wave field on the body surface: 

E°e  ° , He (3.04) 

The reflected wave field on the body surface will equal: 

E e 
ikVL 

H e 
lie*. 

(3.05) 

where E* and H* are related to E° and H° through the Presnel 
formulas (1.13) and (1.14). [.Let us note, apropos of the 
notation, that in (1.13) and (1.14), we considered the phase 
factor e k^° to be included in E°, H° and in E* H* but 
since this factor is identical in both sides of (1.13) and 
(1.14) then it does not matter whether we understand the 
total expressions (3.04) and (3.05) in these equalities or 

their amplitudes.J 
In the notation of this paragraph, E° and H° are constants 

and E and H* are slowly varying functions of the coordinate 
point on the surface. 

Let us denote one of the reflected wave field components 
through F. The value of F on the surface will be: 

ilqfr (u,v) 
F = f(u,v) e (3.06) 

where f(u,v) is a slowly varying function and k is a large 
parameter. In order to find F at a certain distance s from 
the surface, we must know the solution of the wave equation: 

AF + k2F • 0 , (3.07) 

which satisfies the radiation condition and the limit condition 
(2.06) on the surface.  Treating k as a large parameter, the 
approximate form of such a solution can be shown explicitly. 

(13) 
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Actually, let us consider the expression; 

P = f(u,v) rgir.eik(*o+s). (3.08) 

The u,v,s quantities can be interpreted as curvilinear coordinattt 
of a space point related to the x,y,z rectangular coordinates 
through (2.11). The geometric meaning of these curvilinear 
coordinates is evident: the u,v parameters determine the posi- 
tion of that point on the body surface from which the ray, 
coming from x,y,z, is reflected; the quantity s is the distance 
traversed by the ray after reflection. 

Therefore, P in (3.08) can be interpreted as a function of 
the space point. It is evident that this function takes the 
value (3.06) on the surface. It is also evident that it satisfies 
the radiation condition and it corresponds to a scattered wave. 
But, moreover, if the parameter k is large, then P satisfies the 
wave equation approximately. Actually, it can be shown that 
the equalities: 

div 

Jgrad(V0 + s)j
2 

(f2SI grad(^n + s)Y z  0 }■ 

(3.09) 

(3.10) 

result from the definitions of ^Q and D(s) and from (2.11). 
On the basis of these equalities, it is easy to verify 

that second and first power terms in k drop out of (3.07) 
after P is substituted therein and only zero degree terms 
remain. 

The correctness of (3.08) results, independently of the 
reasoning just explained, from geometric optics considerations. 
Actually, this expression must give the reflected wave. But, 
evidently, the phase of the reflected wave equals k(^0 + s). 
As regards the amplitude, then, if we travel along a fine beam 
of reflected rays, the amplitude must vary in inverse propor- 
tion to the square root of the beam cross-section, as is given 
by (3.08). (14) 
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Therefore, this formula gives the reflected wave field 

at the distance s from the surface when the field on the 

surface itself is known. 

Applying this formula to the electric and magnetic field 

components, we obtain: 

E » E (u,v) 

H = H (u,v) 

D<4 ik(^ +s) 

e 
ik(Vs) 

(5.11) 

(5.12) 

where E (u,v) and H (u,v) are the field amplitudes on the 

body surface obtained from the Presnel formulas. 

The formulas we obtained for the field are natural 

combinations of the reflection and geometric (ray) optics 

laws. Both, separately, were known over a hundred years 

ago: Presnel found his reflection laws about 1820 and 

Hamilton found the ray optics laws about 1830. In parti- 

cular, Hamilton knew that the quantity, corresponding to 

our D(s), is a second degree polynomial in s. However, we 

have not been able to find any indication, in the literature, 

of the application of these results to the approximate 

representation of reflected electromagnetic waves. 

4. Diffraction Laws in the Penumbra Region 

In the introduction, we already mentioned that the inci- 

dent and reflected waves become mutually inseparable near the 

geometric shade boundaries, in the region of oblique ray 

incidence, and the Presnel formulas become inapplicable. 

We explain here, on the basis of our work, the idea of the 

derivation of the diffraction formulas which give the field 

in this region and also In the penumbra and umbra regions. 

Let us visualize a convex body on which a plane wave 

falls in the x direction. Let us select a point on the body 

(15) 
. : 

7 '»-v **.' 
-. -' -,*' -- 
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surface which lies on the boundary of geometric shade and let 

us make it the origin. Let us direct the z axis along the 

normal to the surface (towards the air). Since the normal 

on the shade boundary is perpendicular to the wave direction, 

then our x and z axes will be mutually perpendicular. We 

select the y axis so that we will obtain a right-handed 
coordinate system. 

The equation of the surface in the neighborhood of this 
point will be: 

2+| (ax2 + 2bxy + cy2) * o , (4.0!) 

in which 

a >  0 j c » 0 ; ac - b2 » 0 . (4.02) 

The radius of curvature of the normal cross-section of the 
surface will equal: 

R - 1 
Ro " a (4.03) 

Later, we will introduce the 'large parameter' m according 
to the formula: 

m s. 
k 

2a 
(4.04) 

and we will solve our problem by neglecting quantities of 
order -^ in comparison with unity. 

rtr 

Our idea is to find the electromagnetic field at a small, 

compared to the radius of curvature RQ, distance from the origin. 

Under our assumptions, each field component will be: 

p . e
lkx p* 

where P satisfies the differential equation: 

<n      dbc 

(16) 

(4.05) 

(4.06) 
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All the field components can be expressed through Hy and Hz 

thus: 

Ex*E 

■^ 

«r" ■ H. 

H - k (  —X 
x * V3y •&)■ 

(4.or) 

which can be considered as simplified Maxwell equations. 

M. A. Leontovich established the approximate limit 

conditions for a field in air on the boundary of a good- 

conducting body. They are correct under the conditions: 

|nn| » U *R0 | JnT|» l 

and have the form [see (l.l8)J : 

(4.08) 

E - nE ■ n 
M [nxH]. (4.09) 

Later, we will consider y. ■ 1. The normal vector 

component in (4.09) is determined from the equation (4.01) 

of the surface. We can put, approximately: 

nx = ax + by ; ry = bx + cy ; nz = 1 , (4.10) 

because the squares of n„ and n can be neglected in comparison 

with unity. We will consider the quantities nx, n , ± , -a», to 

be small of one order. -H 

(17) 
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Under these assumptions, the limit conditions for fields 

which contain only IL. and Hz can also be derived from (4.07) 
and (4.09). They will be: 

«Z = - °y H. (4.11) 

(4.12) 

Because of the smallness of n. the right sides of these equa- 

tions are correction terms. In a first approximation, they can 

be replaced by zero and the simpler limit conditions can be 
analyzed: 

Hz = 0 (4.13) 

... V      + Ik 

(n* +Jr) "* * °'       (*-u) 

In the second approximation, IT and H values obtained by 

solving the differential equations with the limit conditions 

(4.13) and (4.14)* can be substituted into the right sides 
of (4.11) and (4.12). 

The solution must satisfy the conditions at infinity as 

well as the differential equation and the limit conditions. 

These former are the requirement that the part of the solution 
which corresponds to the plane wave should have a given 
amplitude at infinity. 

*In our basic work . an inconsistency was admitted here, 
namely, (4.11) and (4.14) were considered as the limit conditions. 
Consequently, both the principal and the.correction term were 
obtained in the final expression for H [.see (4,30) belowj and 
only the principal term in the expression for H (4.29). This 
inaccuracy is corrected In this work.       y 

(18) 
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The mathematical problem formulated has a unique solution 

which we will give here minus all the computations and being 

limited to definitions. 
• ikx 

If we do not consider the e   factor, the field will 

depend on the coordinates only through the quantities:* 

i  = m (ax + by) , (4.15) 

£ = 2am2 [z + i (ax2 + 2bxy + cz2 )J ,    (4.16) 

of which the second becomes zero on the surface. The constants, 

characterizing the electric properties of the reflecting sur- 

face, enter into the field expression through the quantities: 

im       5 
q - 

** 

JT' 
m s k 

2a * (*.17) 

All things considered, the field is expressed through 

one universal (i.e., independent of the surface shape) 

function V^^Cq) and through its limit value: 

v2 (1,0  = vx U,£,oo) (4.18) 

The V, function can be represented as a definite integral 

containing the complex Airy functions w-^(t) and Wg(t). These 

latter are defined as the solution of the differential equation: 

w"(t) * tw(t) , (*.19) 

L 

* Moreover, the correction terms will contain y in a linear 
way. 
**If we should use (1.19) and (1.20) instead of the Leon- 

tovich conditions, we would obtain for q the somewhat more 
litt •»■■■■■■■» 

exact expression:    q * —   I TJ - 1 . 

(19) 

■J;,Jir.A 
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which have, for large negative t, the asymptotic expansions: 

wx(t) *  1   exp (i | (- t)5/2 + i * ),  (4#20) 

w2(t) =  1   exp (- i | (- t)3/2 . i *). (if.21) 

The expression for V, has the form: 

VCC.q) ■ 2>F 
/ 

•dt , 

(4.22) 
where the C contour goes along the ray arc t = ■* 7r from infinity 
to zero and along the ray arc t » - t " from zero to infinity. 

For C s 0 (°n *he body surface) the V\ expression simplifies 
and becomes: 

/■ 

(4.23) 

This function is tabulated for a number of values of q; the 
tables for q = 0 (absolutely-conducting body) are printed in 

2 our work. 

Having the definition of VjUjC^q)* we can write the 
expression for the field. To do this, let us introduce the 
functions: 

f -- e"1* 

$ m  e -1* v2(e,o . 

(20) 

(4.24) 

(4.25) 

» 



(4.26) 

and let us form the following expressions with their aid: 

! I? + 0 ! « + "£ ■») (♦-») .  (»-ST) 
a : 11 If + (-11« + lsr- "O <*-*> •    <lt-28» 

Then the Hy and H magnetic field components will equal: 

Hy.Hje^l+i   H2elkxQ, m 

H, • £ H° elkx P + H° elto ♦ , z  m  y        * 

(4.29) 

(4.30) 

where H° and H° are the amplitudes of the incident wave. All 
four of the functions, *, *, P, Q, satisfy the differential 
equation of (4.06) type and will be of the same order of 
magnitude. Since m is a large parameter, then the terms 
containing * and f will be the principal,and the term 
containing P and Q will be corrective. The Ex and Hx field 
components will be of the same order as the correction terms, 
namely: 

E. = " m **? e ikx df (4.31) 

„ - 1 „o .ikx d* 
Hx " m Hz e * ' 

(4.32) 

As regards the remaining electric field components, they 
will equal; 

yHz; Ez « - Hy . (4.33) 

because of the simplified Maxwell equations (4.07). 
Hence, we have determined all the field components. 

(21) 
prTV 
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5. Investigation of the Expressions for the 

Fields in the Umbra and Direct-Visibility 

Regions 

The diffraction formulas we derived, give the field near 
a certain point on the surface of a conducting body in the 

geometric umbra boundary. We show that they give a continuous 

transition from the field corresponding to the Presnel formulas 
(for the direct-visibility region) to total shadow. Let us 
start with the umbra region. 

The integral (4.22) can be represented as the sum of 
residues referred to the roots of the denominator of the 
integrand. We have: 

, (5.01) 
Ve.C.q) = i 2 Jn   > e

Uts   *!<*, " O 

s=l "l<V (t, - Q2) 

where tg is a root of the equation: 

w^(tB) - qw1(ts) = 0 . (5.02) 

The ts roots lie near the ray arc t = ■? and increase in 
absolute value. For sufficiently large positive values of 

i  -JT*> we can be limited to one term in the series of (5.01). 
Moreover, if the asymptotic expansion (4.20) for w2 is used 

and if C is considered to be large in comparison with t, in it, 
then we obtain the approximate expression for V,: 

1        wf(tx) (t2 - q2) 

(5.05) 

The quantity tj has the following values for q = 0 and q * co: 

(22) 
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t1 = 1,01879 • e 5    (q = 0) , 

7T 

tx = 2,53811 (q = oo). 
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(5.04) 

(5.05) 

In every case, both the real and the Imaginary parts of t, are 

positive. Hence, there follows that the V^ and V*2 are the 

♦, f, P and Q functions related to them and, therefore, the 

field, will decrease exponentially as | ~JC increases. 

Let us note that the equality £ -J"T s 0 yields the 

geometric boundary of the umbra. The increasing, positive 

values of £ - JT correspond to points lying farther and 

farther in the umbra region. 
Where the magnitude of £ -JT is small (it can be of 

either sign) we there have the penumbra. We will not dwell 

on methods of computing the V, function in this region; let 

us say only that this function and, therefore, the field 

varies continuously there. 
Now, let us turn to the line-of-slght region where 

£  - Tc"is large and negative. In this case, it is impossible 

to use the series (5.01) for Vj and it is necessary to return 

to the (4.22) integral. The term containing the wg(t - C) 

in this integral can be computed exactly. It yieldss 

/ 

,i*t 

2jF 

where 4> has the value: 

w2(t - C) dt = e1* , (5.06) 

ft5, * = ftC - 5 I* , (5.07) 

which agrees with (4.26). Therefore, this term yields the 

component unity in the * and I functions and it corresponds 

to an incident wave in the field expressions. 

(23) : 
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The second term can be evaluated according to the stationary 

phase method as shown in [lj. The phase extremum is obtained tl 
J- t = p, where: 

\  (el ^  + ?C " 2*) • P s T V W  + 3C - 2«! . (5.08) 

It is convenient to introduce the special notation: 

= 4 r + 3c . (5.09) 

for the square root in the above formula. Let us note that p 

has the same sign as JC - i  since p > 0 corresponds to the line- 
of-sight region, p = 0 to the geometric boundary of the umbra 

and p < 0 to the umbra. We are interested now in large positive 

values of p. Use of the stationary phase method for this case 
yields for all the V\: 

V^Cq) = e = »i* _ M - e £ . q - }p t 6  q + ip ' (5.10) 

where the phase 0 equals (5.07) and the phase 4>   equals: 

f ' ?f  (w5 - 3624 - 2*5) .        (5.11) 

Let us note that the phase difference 0* - # equals: 

(ö + C)(ö- 202 ■ (<5 - P) P2 •  (5.12) 
0* _ $ = . 2 

2T 

Since 4>   - 0 goes to zero on the body surface, 0 ■ p ■ - | 
for C " 0. 

The quantity Vg is obtained from (5.10) for q « GO . The 

♦ and f functions related to V^ and V« will equal approximately: 

(24) 



277 

¥ - 1 - eJ ,i (**-*)   IT", q - }P 
4 6  qTTp (5.15) 

(5.14) 

Not only the functions f and * themselves enter Into 

the field expression but also their derivatives with respect 

to C* All the factors, except the phase, can be considered 

constant when forming the derivatives. Because: 

BC    5   5 
2p (5.15) 

we will have: 

|l s 2ip (f - 1) i    |* « 2ip (• - 1) 

Evaluating P and Q by using these values, we obtain: 

(5.16) 

P = Q 
Jip/b 

P-*^" ) f   ' ■(/-♦> 

(5.17) 

There remains but to substitute the expressions found 

into (4.29) - (4.52) for the field. Hence, it is convenient 

to denote the phase of the reflected wave by the one letter: 

X * kx + *w - $ 

With this notation, we will have: 

(5-18) 

« * lP V (5.19) 

(25) 

* 
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H, = H° elkx - H° z        z z £   e1* 

*< rffc (*•-****) JT •* • 

«x = -i «?-2p^ -ft"«1*- 

(5.20) 

(5.21) 
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Hx = i    Hz   •  2P jr e IX (5.22) 

Ez s - V and, moreover, IL. = H    ; 

The first terms In (5.19) and (5.20) evidently yield the 

incident wave and the remaining terms the reflected wave. In 

the next paragraph, we show that the reflected wave corresponds, 

in accuracy, to the Presnel formula with a correction for beam 
broadening. 

6. Comparison of the Diffraction Formula With the 

Presnel Formula for the Line-of-Sight Region 

Now, let us turn to the Fresnel formulas. Putting u. = 1 

in the Presnel coefficients and considering Hj" a large quantity 

and cos 9  to be small (of the order of -~ , we obtain for N 
and M: J*> 

N 4 n cos 0-1 

[tj cos 0 + 1 
M » - 1 (6.01) 

We must put ax - 1, a» a2 = 0 in the Presnel formulas (1.15) 

and (1.14) and we must consider n„ and n„ small quantities for 

which the squares can be neglected. Then these formulas yield 
for the electric field: 

(26) 
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E„ = - 2Nn„ H° , 

- - H° - (N + 1) xiy  Hj 

»* - », = - NHj + (N + 1) ny H| 

(6.02) 

and for the magnetic field: 

H*.-2NXH«, 

Hj * NHj - (N + 1) riy H° , 

Ht' - Hz- <N + 1> "y «£ 

(6.03) 

In order ot obtain the reflected wave field at a certain 
distance from the surface, it is necessary, according to (3.H) 
and (3.12), to multiply these expressions by the factor: 

ffl 

ik(xQ + s) 
(6.04) 

The value of these quantities, except s, must be taken at that 
x *yQjZ0 point where the reflection of the ray striking the 
x,y,z point, occurred. Since the equation of the reflecting 
surface is: 

zo + k    (axo + 2bxoyo + cy? ) = ° ' 

then we have: 

nx = ax0 + byQ j riy • bxQ + cy0 ; nz 

(6.05) 

(6.06) 

In evaluating D(s) according to the general formula (2.23)» 
we must neglect the last term since we are interested in the 
field at distances which are small in comparison with the 
radius of curvature. The remaining terms yields 

(27) 
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D(s) = cos 8 + 2as = 2as - ax - by .    (6.07) 

In order to make a comparison of the diffraction formulas 
(5.19) - (5.22) and the Presnel formulas (6.02), (6.03), we 
must establish the relationship between the x ,y ,s quantities 
and the x,y,z coordinates (or the £,C»y quantities). This 
relationship is given by (2.11), which becomes in our case: 

x * x + 8 - 2snx2 , 

y = y0 - 2snxny , 

z  = z0  - 2snxnz . 

(6.08) 

Solving these equations, approximately, with respect to xQ,y,s, 
we obtain: 

ax  + by  S iL^A   = . £ , 
0   "o    Jm     m 

y0 = y , 

c i g_±_l - o - P s * "Jam " "Sam * 

(6.09) 

it 

fl' 

• If 

Hence: 

x   m * "y    am    a 
- b' (6.10) 

Furthermore, according to (5.12), (5.13)» the phase x equals: 

X*kx+0 - 0 • lac + (0 - p) p ■ k(x + 2sn£ ) « k(x0 + s) , 

(6.11) 

that is, it equals the phase of the reflected wave calculated 

according to geometric optics. Let us now calculate the 

magnitude of D(s). Substituting (6.09) into (6.07), we obtain: 

(28) 
<•_.-, 
/■',' 



in which, evidently, 

D(s) = | , 

D(O) = oos e * | . (6.13) 

The last three formulas yield: 

4 e 6 e iX * J^Tif e ik(xÄ + s) o (6.14) 

Therefore, the factor (6.14) which enters into all the 
expressions for the reflected wave in the diffraction formulas 
(5.19) - (5*22) agrees with the factor which enters into 
(3.08) - (3.09) which are generalizations of the Fresnel 
formulas. The quantity* 

Js-J^ (6.15) 

here yields the correction for beam broadening. 
There remains to verify that all the other quantities 

in (5.19) - (5.22) agree with the Fresnel. 
According to (4.17) and (6.13)* we have: 

Consequently: 

q a T=T- »      P * m cos 0 . 

q - IP r 1 - 4^008 g = - N , 
q + ip  , . rr— a ' 

(6.16) 

1 + T) COS 9 
(6.17) 

where N is the Fresnel coefficient (6.01). 

* The value q " ~ J TJ - 1 leads to a rather more exact 

value of N, namely: 

N . 21_cos <? -^* - 1 
TJ COS B  + I T) - 1 

(29) 
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Using (6.19) and (6.17) aa notation, we can write (5.19) 
(5.22) for the field thus: 

Hy - Hj eik* + [NH°_ - (N + 1) ny H°] Jf e^ , (6.18) 

Hz = H° e
lkx 

z   z 

Bx * - * Nnx ■? Jl" «iX • • <6-*°> 
«xs-^xHZ JTeix• ;62i> 

Comparing these expressions with the Fresnel formulas 

(6.02) and (6.03) we state that the factors with the magnitude 

of (6.14) agree in accuracy with their Fresnel values H„, Hz, 

E?, H* . The equalities E = Hz and E2 
s - HL are satisfied 

both in the case of our formulas and in the case of the Fresnel 
formulas. 

Therefore, we showed that our formulas transform into the 

generalized fby the introduction of the (6J.4) factorj Fresnel 

formulas in that part of the line-of-sight region where the 

slope of the angle made by the ray with surface of the body 
Is small. 

In the penumbra and umbra regions our formulas yield a 
diffraction picture. 
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XI.  GENERALIZATION OF THE REFLECTION FORMULAS TO THE CASE OF 
REFLECTION OF AN ARBITRARY WAVE FROM A SURFACE OF ARBITRARY FORM 

V. A. Fock 

ABSTRACT 

Fresnel formulas and the laws of Hamilton's ray 
optics are used as a basis for derivation of expressions 
for an electromagnetic field of an arbitrary wave re- 
flected from a surface of arbitrary form. A correction 
for the dilation of the pencil of rays after reflection 
is considered.  In the derivation the tensor form of 
the differential geometry of the reflecting surface is 
used. The Gaussian parameters of the surface in the 
point of reflection and the phase of the reflected wave 
are considered as curvilinear coordinates. For the 
specific case of a spherical wave reflected from a 
sphere, the formulas obtained are compared wlvh those 
obtained from diffraction theory. 

In our paper "The laws of Fresnel reflection and the laws 

of diffraction1" [subsequently referred to as (Ref. 1)1, a re- 

flection formula considering the cross section of the bundle 

of reflected rays was derived for the case of a plane wave 

reflected from a surface of an arbitrary form. This formula 

was then compared with diffraction formulas valid in the half- 

shadow region. 

In the present work the reflection formula is derived 

for the case of reflection of an arbitrary (not a plane) wave. 

Our calculations are based on the application of the laws of 

Fresnel reflection, established by him around 1820, and the 

1- 
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laws of ray optics established by Hamilton around 1830. Our 

results cannot therefore be considered as principally new. 

Inasmuch as the Presnel formulas are applied by us to the 

electromagnetic field, however, and Inasmuch as the laws of 

the ray optics^are formulated by us with the aid of geometry 

in its present day tensor form (which leads to extraordinary 

large simplifications), our results may prove to be useful 

for a practical application. For the convenience of the read- 

er unfamiliar with the tensor form of differential geometry, 

we present a compilation (in Sect. 2) of the necessary form- 

ulas. 

1. Fresnel formulas 

Let the field of an incident wave be represented by 

E°elk*, H°eik*, (1.1) 

where E° and H° denotes amplitude, and f  is the phase expressed 

in units of length, and 

(grad if)2  = 1. (1.2) 

For a plane wave, the amplitudes E° and H° are constant; 

In the general case we shall consider the components of vectors 

E° and H° as slowly variable functions of coordinates. In the 

following, E° and H° are understood to be the values of the 

amplitude of the field on the surface of a reflecting body. 

The corresponding values for a reflected wave will be designa- 

ted by E^and H?. 

Le., furthermore, a(axa a2)be a single vector in the direc- 

« >.f- » 

(2) 
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tion of an incident ray, a1(a^aj)- a single vector in the 

direction of a reflected ray, and n(nxnynz)- the single 

vector of a normal to the surface of the body in the point of 

reflection. According to the law of reflection, the values 

a , a and n are related by a relation: 
1  - o  _ Or,/o.«\ (1.3) a = a - 2n(a«n), 

•^   •» —- 

moreover 

where 9  is the angle of incidence. The values a and aj- are 

proportional to the gradient of the phase of incident and re- 

flected wave. Neglecting the variation of the amplitude over 

one wavelength, we obtain from the Maxwell equation for the 

vacuum 

[a x Ef] - H°; aJ2° « 0, 

whence 

a x H° - - E°j a-H° - 0, 

and analogously for the reflected wave 

r 
La/ x E

J 

(1.5) 

(1 .6) 

(1 .7) 

(l .8) 

B  «1.    fll.Tfl  = 

[a1 x H1' 

We designate by y. the magnetic permeability, and by 

T\  = c + iJ*7T5/co (1.9) 

the complex dielectric constant of the substance of the re- 

flecting body, and introduce the Presnel coefficients 

r\ cos e -Vm - sin* e ,. ... N * n cos g +VET| - sin* 8 ' (1-1°) 

M * tH cos 9 -Vm - sin* 9 
\i cos 9 +r [ii\ - sin* 9 

(3) 

(1.11) 
.'v 
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Then Presnel formulas, which define the relation between the 

amplitudes of the incident and reflected wave, can be written 

in the form: 

(n-ß1)  » N(njJ0), (1.12) 

(jvH1) s M(ivH°). (1.13) 

The amplitudes of the transmitted wave (which penetrates the 

body of the substance) are of no interest to us, and we do not 

write out the corresponding equations. 

Equations (1.7), (1.12) and (1.13) can be solved with 

respect to vector E and H1. Introducing notations 

rrE° = E°; njjf ■ H£, (1.1*) 

and expressing &},  according to (1.3), as a function of a, we 

shall have: 

n x a 

n x a' 
> (1.15) 

. (1.16) 

sin2 eg1 = - NEg (n cos 20 + g cos 0) + MH°| 

sin2 0H1 * - MHR (JQ COS 20 + a cos 0) - NEgI 

The latter formulas can be written in a somewhat different 

form, if we replace a and a1 by a vector tangent to the surface 

b = a + n cos 0 = a* - rj cos 0,       (1.17) 

the square of which equals i 

b2 « sin2 0. (1.18) 

We shall have: 

sin2 0E1 = NEg (n sin2 0 - b cos 0) + MHgfn x b],(1.19) 

sin2 0H1 * MH° (n sin2 0 - b cos 0) - NEg n x bl.(l.SO) 

Such are the amplitude values of a wave reflected from 

the surface of the body as derived from the Presnel formulas. 

00 
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g.    Differential geometry of the reflecting surface 

Let equation of the reflecting surface in a parametric 

form be: 

x = x0(u,v)j    y = y0(u,v);    z • z0(u,v), (2.1) 

where u,v are Gaussian coordinate parameters (curvilinear 

coordinates on the surface). 

Assuming 

5yo dyo  ^zo ^o g; 
dXr 

uv (2.2) 

(2.5) 

(2.4) 

TIT" ov + du "Sv" 4 du dv 

and determining analogously g^ and gvv, we write the square 

of the arc element on the surface in the form of: 

d62 = guUdu
2 + agyydudv + gvvdv2 

or shorter 

do2 = 2J guvdudv. 

We shall utilize the notations for covariant and contra- 

variant components of vectors and tensors by raising and 

lowering the symbols with the aid of the "metric" tensor guv 

contained in (2.4). 

If we let 

s '-uu Svv - (Suv)2» (2-5) 

then the contra-variant components of the metric tensor will 

equal to: 

guu * 
vv  uv 
—; g " 

«UN .vv . ^uu 
6 g  ' " g 

g" = (2.f j 

The totality of the values (2.6) is also called a tensor, which 

is inverse to the tensor guV. The element of the surface will 

(5) 
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be written in the form: 

dS = V^du dv. (^ 7j 

In the following we shall deal with a covariant differen- 

tiation on the surface. For this, we assume 

cw 5u3v + tfiT gu ftv 4 TO- arr-s^ = ■w-5u-3v + W5iT5v + TTT3Tr5v ? uv'w '      (2'8> 

where instead of the combination of u, v, we can also write u,u 

or v,v and the letter w may take on the value of u,v. The 

values uv,w called Christoffel*s symbols, can be expressed 

by derivatives of a , and namely: 

[uv,w]= *(*» <* 'VW 
u "Sw"J (2.9) 

In our case there are six Christoffel-s symbols - three values 
of the form: 

uu,u 

uu,v = Ü5tt - i agi —     I    °uu 
du *v    ' 

(2.10) 

and the other three values obtained from the preceding ones 

by substitution of u with v, and conversely. With their aid 

we form "tensorial parameters" (or "Christoffel's symbols of 

the second kind"), i.e. values: 

Iqr ' SPU[*r>u] ♦ *PY[qr,v], (2.11) 

where each of the letters p, q and r may take on the values 
u, v. 

Let f(u,v) be a certain function of the point on the sur 

(6) 



face. The covariant components of its gradient on the sur- 

face will be equal to: 

fu * df/du; fv * df/oV, (2.12) 

and the contra-variant components will be 

fu = guufu + guvfv. fv . guvfu + gvvfv>     (8#13) 

with the square of the gradient being equal to: 

w/^2 
vj vu + v ■- *m(%)s ♦ *suv & &+ gVW   (2-") 

The square of the gradient is scalar, i.e. it is not depen- 

dent upon the selection of the coordinate parameters u,v. 

The second covariant derivative of the function f(u,v) 

differs from the usual second derivative by the terms linear 

in the first derivatives. We have 

I   - agf  ru df  rv df fuu  *,2  ruu ^  ruu dv , 
du2 

f  - o^f   ru df . rv 3f 
uv ÖUÖV du (2.15) 

f  = *rt  . ru of . r
v df 

vv  5^   vvdu"  vvöv" 

It can be proved that the totality of values fuu, fuv 

and fvv represents a symmetrical tensor, and the expression 

fuu du
2 + 2fuv du dv + fvv dv2 (2.16) 

does not depend upon the choice of coordinates u,v. 

Let us go over now to the formula for the vector compo- 

nents of the normal to the surface and theii* derivatives with 

respect to the parameters u and v; these latter are connected 

(7) 
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with the radii of the curvature rf  the normal cross-sections 

of the surface. We have: 

nyS"« ^o ^o      ^y0 
d'o 

V&nx ■ "5T13v~ " -WSvT        «tc- (2-17) 

where letters "etc." mean two analogous expressions, obtained 

by a cyclic re-arrangement of letters (x, y and z). 

It Is obvious that 

<**o «fro d*o      « ^o ^o dzo      „ 
nx 5u~ + °y ^CT + n* 3u~ * °' nx W + *br 3v~ + n« 3T " °* 

We assume (2.18) 

*uu *x 
d23 

+ n. »*y. ♦ n 
d2

S 
2 ou oufc -  ou* 

0UV - nx tl*   + nv j
gyS    + n    ?*zg uv       x ou öv T "y ou 3v + nz ou 5v * 

32; a2y. 
(2.19) 

a2z, 
°w ■ "x jpr + ny i^ir + n2 o^i2 • 

On the strangth of the equations (2.18), we can replace 

here the usual second derivatives of x0, y0, z0 by the covarlant 

ones. As a matter of fact, by assuming in (2.15) successively 

f • x0, tn* y0, and f • z0, multiplying by nx, ny and nz, and 

adding, we obtain on the left-hand side the linear combina- 

tion of covarlant second derivatives, and on the right, the 

expressions (2.19)» as on the right hand side, the members with 

the first derivatives will be cancelled as a result of (2.18). 

Hencei It follows that the totality of values Quu, 0uV and GTV 

represents a tensor, which will obviously be symmetrical. 

(8) 



On the strength of the same equations (2.18) taken with 

the opposite sign, the values Quv etc. can be written in the 

form o£: 

" °uv ■ ^T W1 + ^ <KT + olT KT • 

Hence it follows that 

- 5? Guv du dv = dnx ^o + dny dyo + dnz dzo 

(2.20) 

(2.21) 

Assuming that 

dr^ * (dx0/ft) + 6nx   etc. (2.22) 

where the infinitely small vector 6n is perpendicular to the 

normal n and to the vector of displacement (dx0, dy0, dz0), 

we obtain 

s G„„ du dv * d62/R, *uv 
(2.23) 

where do2 is the square of the displacement vector producible 

by expression (2.3). Relations (2.22) indicate that R is the 

radius of curvature of the intersection of surface and the 

plane containing the normal and displacement victor. Thus, 

the formula (2.23) gives us an expression for the radius of 

curvature, R, in dependence upon the direction of the plane 

of the normal cross-section. 

Solving equations (2.20) with respect to derivatives of 

i^, ny and nz with respect to u,v, we obtain: 

(9) 
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^2L . . au ^°-  0v "*° ,v ^o 

dv °s& °?^ 
(2.2Ü) 

where values Q$ are obtained from 0^ through formulas analogous 

to (2.13) 

Designating the principal curvature radii of the normal 

cross-section by R. and Rg, we have 

K * lM*i %)  " °u °v * °v °u '        (2.25) 

(1/Äl) + (1/Rg) --0--0g-<g.        (2.26) 

The value K is the Gaussian curvature of the surface. 

3. Cross-section of the bundle of reflected rays. 

Presnel formulas give the amplitude value of the reflected 

wave on the surface of a body. For finding the amplitude of 

the wave reflected at a certain distance from the surface, it 

is necessary to have the formulas for the cross-section of the 

bundle, passing through a surface area dS of the body, and which 

after reflection has traversed the given distance s. Such formu- 

las were carried out by us [in Ref. (1) J for the case, when the 

incident wave is plane. In the present work we shall derive 

them for a general case of an arbitrary incident wave. 

According to the law of reflection written in the form of 

(1.17)« single vectors a and a1, characterizing the direction 

of the incident md reflected ray are expressed by the vector 

b tangent to the surface according to the formulas: 

(10) 
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a = b - n cos 0, (3.1) 

a1 * b + n cos 0, (3.2) 

and moreover, 

n-b «0; b2 = sin2 0. (3.3) 

We designate by <u(u,v) the value of phase ^ of the wave 

incident upon point (u,v) on the surface of the body. Since 

the vector a is the gradient of the phase function y,  the 

components of vector a, [which are tangent to the surface which, 

on the strength of (3.1), are equal to the tangents of compo- 

nents of vector b 1 can be expressed with the derivatives of CD, 

by u and v. These derivatives are, in turn, expressed by com- 

pojients of vector b. We have 

o\i> _   _ ,_ dx0 . ,_ byc     . dz, 
ou 

- v,  °"xO . v.  WJ,0 . K - OU ■ bX j-S + by jj- + b o z 3u~ * 

do)        dx0    öy0 L h özo 
(3.M 

Combining this with the first equation (3.3)»  we can solve 

these three equations for bx, by, and bx. We obtain: 

B Ü)' u 
dxo 
BIT + <D

V 3xo etc. (3.5) 

where the values «ou, <ov are connected with the derivatives 

v*\x*  % by relationships analogous to (2.13). 

The second equation in (3.3) can be written in the form: 

jV gyV <D
U
 a>v = JV guv a^ ü)v = o^ CD

U
. + (^ eov = sin2 8. (3.6) 

(ID 
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Thus, the angle of incidence 6 is expressed directly by 

We examine equations 

x = x0 + saj[    etc. (3.7) 

which can be written in the form of 

x - xQ  + sbx + s cos &  nx  etc. (3.8) 

All values on the right side, except s, represent certain 

known functions of point (u,v) on the surface. Considering 

(u,v) as constant, and varying s, we obtain the equation of the 

ray reflected off point u, v. The parameter s Is, obviously, 

the path traversed by the ray after reflection. Since the 

phase of the incident wave at the point of reflection is a>(u,v), 

the phase \  of the reflected wave will then be equal to: 

X  a B + o>(u,v). (3.9) 

Expressing s in (3.?)lrn,fcerms of y, we obtain: 
x s *0 + (x -  ü>)a^ 

y ■ y0 + (* ' «)«y* (3.10) 

z - zQ  + (x  - (D)aJ 

With a constant x  formulas (3.10) represent parametric equa- 

tions of the wave surface of the reflected wave. 

If in formulas (3.10) we vary the values u, v within the 

.* 'jnits (u,u + du), (v,v + dv), we shall have a certain area of 

the wave surface. This area can be considered as an Intersec- 

tion by the wave surface of the bundle of reflected rays, which 

is passing through an area dS *Y"g du dv. Since the rays are 

(12) 
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perpendicular to the wave surface, this cross-section will be 

normal. Designating its area with D(s)dS, we shall have 

D(s)dS 

■1 4 *2 

dx 
Su k dz 

au 
dx 
5v 

dy_ 
dv 

dz 
3v 

du dv (5.11) 

whence 

D(s) . JL 
Vg 

ax 

dx 
öu 

dx 
o7 

a. 

dv 
57 

az 

dz 
oU 

dz 
57 

(3.12) 

In these formulas, the values d x/du etc. denote deriva- 

j  1    tives of expressions (3.10), evaluated for a constant \.    The 

I    value of the determinant, however, will not change, if they 

are replaced by derivatives with constant s as was done in our 

worlo '. Actually, we have 

(dx/du)x = (dx/du)y - o^ a^  etc.        (3.13) 

and, as a result of such replacement, the second and third 

lines of the determinant will change to values proportional to 

the elements of the first line. Geometrically, this means 

that the intersection of the bundle by any surface (for example, 

by the surface s ■ const.) being projected on a plane perpendi- 

cular to the reflected ray, will produce a normal cross-section 

of the bundle. 

(13) 
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4. Calculation of the determinant 

A direct calculation of the determinant (3.12) Involves 

intricate computations. Such computations may, however, be 

considerably simplified, if in vectors contained in the first, 

second and third line of the determinant, one would go from 

components along the axes x, y, z over to the components along 

two tangent directions and direction of the normal to the re- 
flecting surface. 

Suppose we have a determinant 

*x  *y  *z 
A s 

C„ 
By B2 (4.1) 

We assume that 
3x, 

^ = A*o?+^+A, -o dzt 
* ST" ' 

9x, A *-£ + A ^o  . dz0 
(4.2) 

(4.3) 

An - Axnx + Ayny + A^, 

whence conversely 

JL, = Au ^SL + *v öxo _, . 
**  A Sir + A 5v~ + Vx. 

Av * Au ^2. + AV ^o . A n 
^    35T + A ov" + AnIV' 

** s  AU onT + AV &r + Vz . 

Here A* and Av are connected with A, and A, by formulas analo- 

gous to (2.13). An analogous transformation will be. introduced 

(14) 
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In order to use these formulas for calculation of determinant 

(3.12), we must assume that 
1     „1 

y * ay  z = *"' 

ö*  « _ öy  o - öz. (4.6) 

Ay = aj, A„ 

Bx = ouJ ^'S' Bz = §Üh 

öx cy = 
' r    -  dz. 
r> uz  c5v" 

According to (5.2) and (5.3), we obtain then: 

Au = <%; Ay « a^; An = cos 6, (k.7) 

The calculation of the new components of vectors B and C is 

considerably more complex. We ha*fe 

Ox, -o     1    aax 
Bx s 3KT " "h ax + s 3u" (4.8) 

and according to (1.17) 

öxn 1 
*x = BIT " ** ** + 8 

fdbx 
o\T + nx 

9(cos 6) o ^V 
(4.9) 

"I i 
(15) 
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According to formula (2.20), we have 

dnx ÖXQ  dr^ dy0  dnz dZo 
o5T is^r   3u ^r + 3T?r   *°uv' (4.10) 

Moreover, this expression is symmetrical with respect to u,v. 

Now we calculate the value 

b  s 
dbx dxo sv 

dby dy0  
öb2 öz« 

(4.11) 

As a result of formulas (3.4) this value can be written,in the 
form: 

a2   /  d2x      d*v      d2z    \ 

whence it is evident that buv is likewise symmetrical with 

respect to u,v. Replacing here bx, by, bz by expressions from 

(3.5) and using (2.8), we can write this value in the form: 

b«v • Ä - »U [«v. u] - .* [uv, v].       (»-I?) 

Introducing according to (2.11) the "tensor parameters" 
r?r, we can aJso write: 

b  = °-ü> - ru tu - rv m. Duv  3Ü-ÖV  xuv %  'uv «v (4.14) 

Comparing this expression with (2.15), we receive a simple 
result: o 

buv = o>uv, (4.15) 

where a\jV is the second covarlant derivative of thepphase o>. 

This result is valid not only for notations (u,v), but also 

for other combinations of notations (u,u) and (v,v). 

(16) 



The obtained formulas enable us to find values By, By, Cu 

and Cv (shown further on). Into expressions for Bn and Cn 

there enter values 

A - „ dbx _,   dby    dbz 
*u ' nx 3ü~ + ny 5u + nz SET ' 

ft  > n 
bbx    dbv    Öb2 ßv * 

nx ^ + ny ^L + n2 ^_* . 

(4.16) 

(^.17) 

Let us calculate one of them. As a result of (b«n) = 0 we 

have: 

, = -( bx pL + bv ** + h ^ 
x du  y du   2 aU/ * 

In place of bx, by and bz, we substitute here expressions 

0.5),  and making use of (2.20), we obtain: 

ßu s Guu ">U + Guv «üVi (4.19) 

analogously 

ßv = Gvu <oU + Gvv o>V» (4.20) 

Now we can write out the new components of all vectors. 

We have 

Bu * Suu " o>u ">u + s(ü\m " cos e °uu)> 

By * guv - a>u a>y + sfa^v - cos 0 Guv)* 

BJI s - »u cos 6 + s(Quu a>u * Guv »% + 3(cos 6)\ 
ou        J* (4.21) 

Cu 

cn 

8vu - (»v % + 3(ü>vU - cos 6 Gvu), 

gvv - ü>V coy + s(a>vv - cos 6 Gvv), 

- ajy cos 6 + s(ovu CD
U
 + Gvv a>v + 2Jj££5 $)\ (4.22) 

(17) 
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D (s) « 1 
g (*.2J) 

Besides, according to (4.7) 

Ay « ti>y;   Ay = (Dy;   A„ = cos 0. 

With these values of A, B, C, the determinant D(s), which 

gives the cross-section of the bundle of rays, will be equal to: 

Ay Ay AJJ 

By     By     Bn 

, cu      cv      Cn j 

This expression for the determinant can be considerably 

simplified with the aid of relations 

Ay a>u + Ay CDV + An cos 6*1, 

By o)u + By (Dv + Byj cos 0 ■ 0, (4.24) 

Cu co
u + Cv a>v + C cos 6 = 0. 

These relations can be easily checked. According to (3.6) we 

have 

o)y CDU + ojy a>v s sin2 0 * 1 - cos2 0.       (4.25) 

Taking from this expression the covariant derivative with 

respect to u and v (it coincides with the usual derivative), 

we obtain by dividing by 2 

«~- "*u *• ü^y CD
V
 ■ - cos 0 ilSgL-Sl, 

(4.26) «>vu <*>" + üVV ü)V ■ - cos 0 d(cos 0) 
öv  • 

Substituting into (4.24) the evident expressions (4.7), 

(4.21) and (4.22) for the components of vectors A, B and c/ 

(18) 



and making use of (4.25) and (4.26), we are convinced in the 

validity of relations (4.24). The geometrical sense of these 

relations is obvious. They express the fact that A is a 

vector normal to the wave surface, while vectors B and C are 

perpendicular to A. 

Multiplying the third column in (4.23) by cos e, and 

making use of (4.24), we obtain 

D (s) cos $  ■ -L 
g 

AU 

Bu 

cu 

B, 

1 

0 1 
g 

By    By 

'u 

(4.27) 

This expression acquires a more "elegant" form, if we 

introduce a symmetrical tensor 

Tuv - guv " »u ">v 
+ 8Kv " cos e fluv>-      (4'28) 

According to (4.21) and (4.22) we shall have then 

Bu - Tuu,  Bv - Tuv, <4-29> 

Cu = Tvu,  Cv - Tvv, (4-^°) 

and the determinant (4.27) will take on the form of: 

D (s) cos 0 * j* 
TUu  

Tuv 

Tvu  Tvv 
(4.31) 

If we introduce the mixed components of tensor Tuv accord- 

ing to the formulas?    
lrv 

(19) 
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(*.33) 

then instead of (4.21) we can write 

D (s) cos 6  - 

or expanding the determinant 

D (s) cos 6  « TjJ TJ - f*  Tj (4.34) 

Thus, the calculation of the determinant D(s) is reduced to the 

calculation of the tensor Tuv, which presents no difficulties. 

5. Differential geometry of the wave surface. 

According to (2.10), equations 

x ■ *o + (X - o*)**     etc- (S'.l) 

represent, with constant x»  the parametric equations of the 

reflected wave surface. Every point on the wave surface corres- 

ponds to a definite point on the reflected surface, and namely, 

with the one that lies on one and the same ray. To these two 

points there correspond one and the same values of parameters 

u,v. Parameters u,v and phase x can be interpreted as curvi- 

linear coordinates in the space. 

The square of the distance between two Infinitely close 

points will be In the form of: 

(5.2) dl2 • 2~y Suv du dv + dx2. 

In this expression the products of differentials dudx and dydx 

will be absent, but the square of the differential dx will enter 

(20) 
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represents a square of an arc element on the wave surface. 

We shall now find the coefficients of this quadratic 

form. Recalling equations (4.6) for vectors B and C, we can 

analogously to (2.8) write 

«uu * f*      «uv ■ W  *vv -' t' <5'4) 

In calculating the scalar product and the squares of vectors 

B. and C, we can make use of their components (fc.21) and (fr.22) 

We shall have, for example 

^X1 „UM VJ  p  ^ ^ (5>5J B' 8   BU Bv + V 

Using (4.24) and introducing notations: 

*uv = guv + (ü)UcüV/cos2 6), 

we may write 

u,v 
B" = >  7"" B.. B... 

(5.6) 

(5.7) 

Replacing the notations beneath the summation sign by 

letters p,q, and making use of (4.29), we obtain according 

to the rays from (5.4): 

1 = y ^>q Tn?> T 
*UU  2mA UP  U<* (5.8) 

Pil 

(21) 
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Analogously, 

«4-y; ̂  Tup Tvq, 

^q Tvp Tvq' 

(5.9) 

(5.10) 

Thus, the coefficients of quadratic form (5.3) are expressed 

directly through tensor Tuy. By designating with g1 the determi- 

nant 
e1 - 1  1    11 

" *uu 8vv " *uv gvu (5.11) 

(a discriminant of a quadratic form) we have on the basis of 

equations (5.8) to (5.10) 

ici ,_ . _ .0 
(5.12) g1 - Det V>q (Det Tuy)

2, 

whence 

g1 = g D(s)2. (5.13) 

1 
The element dS of the surface of a reflected wave, correspond- 

ing to the element dS of the reflecting surface, is equal to: 

dS1 = Vg1 du dv = D(s) Vg du dv * D(s)dS,      (5.14) 

as it should be. 

Values Tuv are linear, and values g^ are quadratic func- 

tions of s. With s * 0, we have 

*uv (0)' s Tuv (0) = g^ . % cov. 

We note that this tensor is inverse to that of <yuv. 

With an arbitrary s, we can write 

(5.15) 

(22) 

m 



Tuv <a> sTuv  <°> +sTuv <°>- (5.16) 

where, acoordlng to (4.28) 

ruv <0) s%v'- cos 6 Quv, (5.17) 

and also 

4, <s>= TUV (°)+ 2s su <°>+/2 y\ ^q TuP (°) v <°> 
~ (5.18) 

We go over to the calculation of the second quadratic 

form, determining the curvature radii of the wave surface. 

The determination of it is analogous to (2.20), only instead 

of the vector n, we must substitute vectoi a of the normal 

to the wave surface, and in place of values dx^o^v etc. — 

the values dx/dv etc., i.e. the components of "vector" c 

(4.6). According to this determination we have 

3n_J 
Öai *~  da 

uv v '  ou ov  ou ov 

1 
z dz + onTS? (5.19) 

But this expression has already been found by us when calcu- 

lating g . Using (4.8), we can write 

- BOJV (s) = (Bx - (9x0/du) + o>ua*) Cx + ...,  (5.20) 

where the punctuation denotes the products of components 

according to axes y and z. 

Hence: 

-sQuv (s) * B-C - Cu = guv (s) - Tuv (s).      (5.21) 

Thus, the coefficients of the first and second quadratic form 

(23) 
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are connected with tensor Tuy(s) by a relation: 

*uv (8> +8Quv <s>  = Tuv (»)• (5.22) 

Prom this as well as from (5.16) and (5.18) we can find also 

the evident expression for 0  (s), namely 

- °u, (■> T  (0) uv v ' 
+ 8JVq<p(o) V(0)<  b23) 

In particular, with s = 0, as a result of (5.17), there will 

be 

" °uv <°) = %v * 
C08 e  auv- (5.24) 

In this manner, for the reflected wave we have found both 

the first as well as the second form. 

Analogous calculations can be carried out also for the 

incident wave. For this, it is sufficient to replace in (3.7) 

and in other formulas a with ai a [formula (3.1) L and consider 

s as negative, so that (-s) is a distance calculable along the 

ray up to the point incidence on the surface. We shall limit 

ourselves by introducing the formulas for the values of coeffi- 

cients g? (0) and G° (0) of the first and second quadratic 

form of the incident wave in the point of incidence of the ray. 

We shall have 
_o 
Suv*0)  s Suv " % V 

" O0>   = %v + cos & auv 

(5.25) 

(5.26) 

From these formulas, it is evident that values g° and 

(24) 
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g  converge on the reflecting body, but those for Quv and 

Q* differ by their sign in the term containing cos 6.    It is 

convenient tc use relation (5.26) in the case, when the inci- 

dent wave is plane: then G° = 0 and, consequently, 

tu  * - cos 0 G uv uv 

Inserting this value in (4.28) we obtain 

T  =K.  - o> o> - 2s cos 8 G uv  *uv   u v uv 

(5.27) 

(5.28) 

Calculating the value D(s) according to formula (4.34) 

and using (4.25), we shall have after reduction by cos 6, 

D(s) = cos 6 - 2s (G cos2 6 + \~*GUV a>u U)V j + 4s2 cos 6  K. 

\        u#       '       (5.29) 

Here K and G have values (2.25) and (2.26). In order to ex- 

plain the geometrical sense of the sum, contained in the 

second term of (5.29), we note that if du and dv are compo- 

nents of displacement on the surface of a reflecting body in 

the plane of the incident ray, and d is the value of this 

displacement, then we have 

u du . m 
d"d " sin 6J 

dv _  op 
16 ~ sin e ' (5.30) 

Therefore, with R designating the radius of curvature of the 

intersection of the surface with the plane of incidence, we 

have 

^"S n
     du dv .  1  r~* auv H6 3c " k^f ^ Guv ®U fl)V-   (5.31) 

(25) 
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Inserting this value of the sum into (5.29) and expressing 0 

and K, according to (2.25) and (2.26) through principal radii 

of curvature we have for the case of the incident plane wave 

the following expression for D(s): 

.2 
D(s) * cos 0 > 2s 

1   2\ ™«2 fl . sin2 9 
[iq- + RT)

cos  e + -T£— 
Is' 

Rl R2 
cos 0. 

(5.32) 

This formula was derived by us in our previous work (1) 

il IS ill 1 

6. Reflection formula 

The results obtained enable us to find (in the approxima- 

tion of geometric optics) the electromagnetic field of the re- 

flected wave. The field of the incident wave we wrote in the 

E°eik^  H°elk*. (6.1) 

As m  (u,v) i3 the value of the phase f on the surface of the 

reflecting body, then on the surface of the body the field of 

the incident wave will be equal to 

E° (u, v)elkü>;  H° (u, v)ellm,       (6.2) 

where E° (u,v) and H° (u,v) - are values of amplitudes E° and 

H° on the surface of the body. Knowing E° (u,v) and H° (u,v), 

it is possible to find from Presnel formulas (given in Sect.l) 
1 1 the amplitude values of E (u,v) and H (u,v) of the field of 

the reflected wave on the surface of the body. The field of 

the reflected wave on this surface will be equal to 

E1 (u, v)eikü>;  H1 (u, v)elkü>.        (6.3) 

(26) 



Thus, the values (6.3) can be considered as known (at least 

on the illuminated part of the surface, sufficiently distant 

from the boundary of the shadow). 

We must find the field at a certain distance from the 

surface. For each of the components of the electromagnetic 

field this problem is reduced to the following: it is neces- 

sary to find function P satisfying the wave equation 

ÄF + k2F = 0 (6.4) 

and the condition of radiation, and acquiring on the surface 

of the body the given value 

P - f(u, v) eik0) <u'v>. (6.5) 

In our case k is the major parameter, and f(u,v) is a slowly 

variable function. The last assertion is to be understood in 

the sense that the derivatives, divided by k, of the function 

in directions tangent to the surface are small in comparison 

with the values of the function itself. It is easy in this 

case to indicate an approximate solution of our problem. 

Obviously, the phase of the desired function will be obtained 

by replacing CD with 

X * CL> + s, (6.6) 

where s is the path traversed by the ray after the reflection. 

Its amplitude, however, will change inversely proportional to 

the square root of Intersection area of the bundle of reflected 

rays. Thus, we arrive at the formula; 

P - f(u,v)VD(0)/D(B) eik*, (6.7) 

I (27) 
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where \ nas tne value of (6.6). 

Formula (6.7) can be derived in the following manner. Let 

us try to find F in the form: 

P * Vpeik*, (6.8) 
t 

where p and x - are certain functions of the coordinates, not 

dependent upon the parameter k. Inserting (6.8) into the wave 

equation (6.4), we find 

AP + k2P = eikx' k2Vp"(l - (grad x')2)+ ^div (p grad x') + A (V 
V j   V* (6.9) 

The equation of oscillations will be approximately satis- 

fied, if in expression (6.9) terms of the k and k order are 

equated to zero. For this the phase x' and the amplitude square 

p must satisfy the equations 

(grad x') s 1> 

div (p grad x') * 0. 

(6.10) 

(6.11) 

Let us introduce now the curvilinear coordinates u,v,x> 

connected with rectangular Cartesian coordinates x, y, z by 

means of relations (3.10), and write equations (6.10) and (6.11) 

in these curvilinear coordinates. Introducing according to 

formulas, analogous to (2.6), the tensor g  , inverse to that 

of guv determinable by formulas (5.8) to (5.10), we shall have 

instead of (6.10), 

S1UV^|^+ !^
2 = 1 (6.12) 5 

(28) 
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end instead of (6.11), 

tfcW* 3? (P  e1^ OX 
= 0. (6.15) 

Equation (6.12) is satisfied, if we let 

X* = X- 

Equation (6.13) is then reduced to the form: 

fj (p/s1) - o, 

(6.14) 

(6.15) 

and since according to  (5.13) 

l/g1 *   VgD(s), (6.16) 

where g is not dependent on \>  ifc w111 De satisfied if we 

assume that 

pD (s) = 0(u,v), (6.17) 

where 0 is an arbitrary function of u,v. 

In order to have an agreement with (6.7)* it is suffi- 

cient to assume that 

l/p~= f(u,v) Vt>(0)/b(s). (6.18) 

Thus, we have proved that function (6.7) approximately 

satisfies the wave equation (6.4). Obviously, it also satis- 

fies the radiation condition (its phase increases with a 

growing s). Finally, with s = 0, it is reduced to the given 

function (6.5). Consequently, it satisfies all the require- 

ments that were set up. 

Applying expression (6.7) to the field of the reflected 

(29) 

i 
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wave, and adding to it the field of an incident wave, we shall 

obtain the reflection formula in the form: 

E - E°elk* + K2(u, v) D(0)/D (s) eik*,      (6.19) 

H = HV** + H^u, v) D(0)/D (s) elk*.      (6.20) 

in conclusion, we wish to mention that if the reflected 

body is convex, the reflection formula is applicable in the en- 

tire illuminated space sufficiently removed from the boundaries 

of the shadow (and at large distances from the body as well). 

If, however, the body is concave, then with certain values of 

s it is possible to transform denominator D(s) into zero (focal 

surfaces and lines). In the neighborhood of the focal lines 

and surfaces, the geometric optics and, in particular, the re- 

flection formula, are not applicable, since the condition that 

an amplitude be a slowly varying function of coordinates is 

not fulfilled. 

Conversion of reflection formula on the shadow boundary 

to the diffractional ones has been investigated (for the plane 

incident wave and for small distances from the surface of the 

body) in our work' '* 

7. Reflection of the spherical wave from the surface of a sphere. 

As an example for the application of the derived formulas, 

let us examine the reflection of a spherical wave from the sur- 

face of a sphere. Let r, 6, 0 be spherical coordinates. Equa- 

tion of the reflected surface is in the form of r * a. The part 

(30) 
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of the Gaussian parameters u,v is played by the angles 6,  0, 

so that in our general formulas we may assume 

u = 6;    v - *. (7.1) 

Let the source be located in point 0 » 0, r = b. The 

phase value of the wave incident on the surface of a sphere 

will then be 

<a(0,0) = ra2 + b2 - 2ab cos 0. 

The element of the surface of the sphere is written 

do2 = a2(de2 + sin2 0 d$2), 

whence 

800 = a * 

tfz  = a2 sin 0, 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

g6e = 1/a2;  g9* = 0;  g**  = l/(a2 sin2 e).  (7.6) 

According to the property of the sphere, the second 

differential formula will be proportional to the first, and 

we shall have 

a00 = - a'  °00 s °'  °00 = " a 8in2 e>      (7'7) 

The covariant derivatives of phase to will be equal to 

o>0 ■ ab sin 0/co;  CD. = 0, (7.8) 

and the contra-variant derivatives will be written as 

CD
6
 ■ b sin 0/(a to);  to* = 0. (7.9) 

The incidence angle of the ray (which we shall designate 

now with *y, since the letter© has already been assigned) will 

(51) 
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be determined from equations: 

sin 7 ■ b sin 0/o>;  cos 7 = (b cos 8 -  a)/o>,    (7.10) 

resulting from (4.25). In order to calculate the second 

covariant derivatives of the phase, let us construct according 

to formulas (2.8) to (2.11) the Christoffel symbols. We have 

r»    - 
88 r„„  = 0; r60 = °'> 

TM  s - sin 0 cos 0,  (7.11) 

'00 0; r^ a ct« *' r*0 . 0. 00 

Substituting these values into the general formulas (2.15), we 

obtain 

(ÜQQ  = (ab/cD^)(b cos 6 - a) (b - a cos 0), 

<*8<t>  s 0* (7.12) 
o 

a).. - (ab/cü) sin 0 cos 0. 

Now we can construct tensor T . We have 

TQe  = (a2i&>2)(b cos 0-a)2 + (sa/or5) (b cos 0-a) (to2 + b2- ab cos 8), 

T00 ' °> 
rp - «2 
X00 

(7.13) 

= a sin 8  + (sa/to) sin2 0 (2b cos 0 - a). 

Let us go over now to the mixed components of Tg etc., and 

express b sin 0 and b cos 8  with the aid of (7.10) by a, <p and 7. 

We obtain 

rf-.SSiJtft. + o>) cos 7 + 2J2), l0 CO 

TJ »£(•+« + 
whereas T6

t -  T* = 0. 

2sto „~„  \ "a" cos yj , 

(7.14) 

(52) 



According to (4.}4) D(s) cos 7 1B equal to the product 

of values (7.14). Hence 

ÜJ2 D(s) 
•( 

(s + (a)  cos 7 + *?)(• ♦ - + £~ cos 7 
-> 

(7.15) 

The expression is symmetrical with respect to s and a). 

Our results enable us at once to wr)lte out the reflec- 

tion formula for the vertical component of the electric and 

magnetic Hertzian vector- which satisfies the scalar wave 

equation. 

Designating with letter R the distance from the source, 

which equals 

(7.16) /b2 + r2 R * Y b"" + r"  - 2br cos 6 

we shall have for the Hertzian electric vector 

ikR 
U = e-B— + N — 

R 0) 

iktD i/ü>s. (7.17) 

where N is the Presnel coefficient (1.10). For the Hertzian 

magnetic vector, the formula will be the same, only Instead 

of N there will be another Presnel's coefficient M. 

Introducing for D(s) the expression (7.15)* and assuming 

for the sake of simplification that 

2s(ii/a(s + a>) = Cp (7.18) 

we shall have 

.ikR 
Ü =e H- u> 

N  4/  cos *y r    ik(o) + s) 
(cos 7 + 5J7Ü ♦ ci co8 7) 

(7.19) 

(33) 
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This formula can be compared with that obtained from the 

diffraction formulas derived in our paper*2) for the case of 

grazing ray incidence, and for distances from the surface of 

the sphere, which are small as compared with its radius. The 

formula indicated is reduced to the form: 

Ü * 
.ikR " »■■■   i ■■imp 

\       P - iq Vp + 
>2iPlPJ 

(7.20) 

Here 

p = m cos 7; P1 - mc1; q « im(VTj - l/n),    (7.21) 

while 
3  
\Z~ka/2. m » Y «a/2. (7.22) 

The necessary conditions of applicability of the reflection 

formula (7.20) are the large positive values of the magnitude 

p; if, however, p is of the order of unity, then the diffrac- 

tion formulas will be valid. 

It is not difficult to see that formula (7.20) in its due 

approximation coincides with (7.19). As the values c1 and cos 7 

are small relative to unity, therefore, their product in (7.19) 

can be neglected. Further, the quantity CD + s in the denomina- 

tor can be replaced with R. For the same quantity in the exponen- 

tial function, we can use expression 

whence approximately 

JC(CD + 8 - R) . kaC;L cos
2 7 = 2plP

2, 
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Furthermore, 

cos y 
cos 7 + c. P + Pi 

(7.25) 

Finally, we have for small cos 7 and for \i  = 1 

N = (P + iq)/(p - lq). (7.26) 

If we use these approximate expressions, the agreement between 

(7.19) and (7.20) will be complete. 

<! 
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XII.   APPROXIMATE FORMULA FOR DISTANCE OF THE 
HORIZON IN THE PRESENCE OF SUPERREFRACTION 

V.  A.  POCK 

A derivation is given of a formula for the distance of radiowave 
propagation (horizon distance) in the presence of super refraction. 
The formula obtained is suitable for an atmospheric waveguide next 
the earth in which the modified refractive index depends on the height 
according to a hyperbolic law. 

1. INTRODUCTION 

A general formula for the attenuation factor was derived as acar^sur 

integral in our work on the theory of radiowave propagation in an 

inhomogeneous atmosphere.      The expression we obtained is ap- 

plicable for the very general case of arbitrary behavior of the 

refractive index depending on height.    The basic difficulty in using 

our general formula is in solving the differential equation for the 

height factor.   This difficulty can be bypassed by using an asymptotic 

solution of the equation (this method is based on the presence of a 

large parameter in the equation).   Obtaining an approximate ex* 

pression for the height factor, the integrand in the contour integral 

can be written in explicit form and then it can be studied.   A quali- 

tative investigation of the integrand permits an estimate to be given 

of these distances at which the attenuation factor starts to decrease 

rapidly, in other words, the estimate of the horizon distance. 

2. INITIAL FORMULAS 

In the general case the field from a vertical and horizontal 

electric and magnetic dipole is expressed by means of two Hertz 

functions,   U and W, which satisfy the same differential equations; 

■1 

P>3I? 
PREVIOUS f>AOS 

»BLANK 
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the limit conditions for U and W are also of the same type but with 

different values for the coefficients.      Each of the Hertz functions can 

be expressed bv means of the attenuation factor V thus: 

iks 
U - 

y** sinTr 
V. (1) 

where a is the radius of the earth;  •  is the horizontal distance 

measured along an arc of the earth's globe;   k s-~ is the absolute 
value of the wave vector. 

The attenuation factor V is expressed more conveniently through 

the nondimensional quantities:   the modified horizontal distance. 

X s -      y 8 

2m 
<2) 

and the modified heights of the corresponding points (source and 
observation points): 

v =~h;y' -ih' , mm (3) 

where h and h'  are heights in length units and m is the parameter: 

UH 

! j 

m ka 
(4) 

The equivalent radius of the earth does not play the role in 

problems related to superrefraction that it plays in the normal 

refraction case; consequently, we do not introduce it here.    In addition 

to the quantities listed, the attenuation factor V depends on the 

parameter q which enters into the limit conditions.   The parameter q 

for the Hertz function U (vertical polarization) equals: 

im 

-ypT • (5) 

(2) 

l 
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where TJ is the complex dielectric constant of the medium.    The 

parameter q for the Hertz function W (horizontal polarization) 

equals 

q:im i-/r| - 1 (6) 

In practice, we can put q = co in the last case since both the para- 

meters m and y\ are large. 
Hence, the attenuation factor V is a function of the nondimensxonal 

quantities x, y, y*, q: 

V = V(x, y, y'» q)- (7) 

In addition to the attenuation factor V, it is convenient to analyze 

the function  Y related thereto, whereby V is thus expressed: 

i*r 
V = 2-/ff*e   4   f • (8) 

The function f satisfies the differential equation 

iif+i-|J + ry + '(y)J * = ° 
dy 

(9) 

where 

r(y) *rn  (e - 1). (10) 

in which e = e(h) is the air dielectric constant as a function of the 

height.   Equation (9) is obtained by a transformation to the nondimen- 

sional quantities from the equation 

"5?        *" 
(ID 

(3) 



'*Be?T* ■'ZOfr^"*-- 

322 

in which  the ? coefficient is proportional to the modified refractive 
index 

M(h) = 106Ci7-i4^). U2> 

I i! 1 ' 

The ? coefficient in Eq. (9) it conveniently denoted by a single 
letter; we put 

*i   i We will have 

p(y) =y 4 r(y). 

p(y) * m2(€ - 1 ♦-?£), 

(13) 

(14) 

so that p(y) is, in substance, the same modified refractive index but 

expressed through the nondimensional height y. 

Using the notation of Eq.  (l3),Eq.  (9) is written as 

ay
2     *x (15) 

The function f satisfies the differential Eq.  (15) and the limit 
condition 

-|£ 4 q f = 0 (for y * 0); 

at x = 0, it has a singularity of the form 

(16) 

* ywx ( y4y' -Ziqx J . 

I; 
(4) 
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In the general expression   for the function ¥ as a contour 

integral the integrand was expressed through the solution of the 

equation 

d2f S-§   +p(y)f = tf, 
dy2 

(18) 

where t is a complex parameter.    (These solutions were called the 

height factors above.) 
In order to form the integrand, it is necessary to know both 

solutions of Eq. (18); let us denote them by f,(y,t) and f2(y»t). 

These functions have the following asymptotic expressions for 

large y: 

f^y.t)*-! e 
*4 

VPM
7 

exp [i J    yfc(u) - t'duj, (19) 

4 
f2(y,t)=-J 

Vply) 

y 

expt-i    1 -yp(u) - t" duj. (20) 

Here c', c", T are constants whose values are not essential since 

they drop out of the expression for f •    In the homogeneous atmosphere 

case when p(y)   = t, the functions f.(y,t) and f2(y,t) reduce to the 

complex Airy functions w. (t - y) and w^(t - y), in which we can then 

put c* * c" = 1 and T = t. 

Let us put 

df2 oil 
DiiW'i"Sf-fi-S7 (21) 

(5) 
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Because of Sq. <i8), which f   ^ ^ 

is independent of y. 

- 5." -:,:; rrdLr * -y * ° * £',o", 

The function f determined for y'^y by the contour integral 

= *kj ixt _. e      F(t, y, y\q)dt. 

(22) 

(23) 

taken over the contour enclosing all the poles of the integrand in a 

positive direction, satisfies all the conditions set above and yields 
a solution to our problem. 

,i 

n 

3. NORMAL REFRACTION CASE 

The normal refraction case is characterized by the modified 
refractive index M(h) being a monotonically increasing function of 

the height h and, therefore, the coefficient p(y) is a monotonically 
increasing function of y.   In this case,   f.(y, t) and f,(y, t) can 

be expressed approximately by the complex Airy functions of argument i 
defined by the equalities 

f^pM - räu =4(-£ji ; (24) 

o 

JV - P(u)' -pTÜTdu *«§£*, (25) 

(6) 
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where b ia a root of the equation 

p(b) * t. (26) 

The value of £ near y = b will be a holomorphic function of y, 

namely: 

i =föfr) (b - y) +  .. 

We can put approximately 

and to the same approximation 

(27) 

(28) 

|»-^-.»'&-^1»- 
from which 

n12 , - 2i 

(29) 

(30) 

Here, replacing y by y' and £ by £', we obtain expressions 

for fj(y',t) and f^y'.t).   The value of £ corresponding to y * 0 

is denoted by % •   Using these notations, we obtain the following 

approximate expression for F, defined by formula (22): 

V (3D 

(7) 
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When being substituted in formula (23), this expression can be 

used to calculate the field in both the shadow region and in the line* 

of-sight region.   The attenuation factor (as well as the function 7) 

is calculated in the shadow region by a residue series corresponding 
to the roots of the denominator 

f 

IN 
% i 

wi(y+^ wi<g = o- (32) 

The function f is calculated directly in the line-of-sight region 
by using the contour integral in which the principal part of the 

integration will lie near real negative values of t.   But the quantities % , 

£ and £' will also be negative for negative t values.   Assuming these 
quantities to be sufficiently large, the functions w. and w, can be 
replaced by their asymptotic expressions: 

*!<*>«•   4K)     4e    3 , 

_. jr 1 

w2($)=e       4(-£)    "*e 
-i-TK)* 

(33) 

(34) 

Such a substitution reduces to the use of the asymptotic 

expressions in Eqs.  (19) and (20) for f.(y,t) and f,(y, t).   C< 

sequently,  the following expression is obtained for the function F 
[according to formula (22fl: 

#on- 

2 4, 
>(y) 

t 
. tl 4<y> -1 fexp£iJ^rrTdu><35) 

q + 

i ■ -1 y yl 

^pM - I'exPCiJ^u) " t du + ij0)(u) -t du]    . 

(8) 



This formula is a generalization of formula (6. 11).      The latter can 

be obtained from Eq.  (35) by substituting zero for p(y). 

Substitution of Eq.  (35) into the contour integral yields an 

expression, composed of two terms, for the attentuation factor, 

the first of which corresponds to an incident wave and the seccad to 

a wave reflected once from the earth's surface with a Fresnel coef- 

ficient.   The incident wave is the superposition of a wave with the 

phase 

w(t) = xt ♦   f v£(ü 
y 

) - t du , (36) 

and the reflected wave is the superposition of a wave with the phase 

0 (t) = xt + 

y y'  

(vOT -1 du + J>^>(u) -1 du (37) 

These expressions correspond to those of geometric optics.    The 

integrals can be evaluated by the method of stationary phase, where 

the phase of the incident wave will equal the extremum value of w(t) 

and the phase of the reflected wave will equal the extremum value 

of 0{t).    The function u>(t) attains its extremum value for t determined 

from the equation 

w,(t)?x-TJVPT#h =°- (38) 

and the function 0(t) for t determined from 

♦,w-"-±Jvwrf*-+Jvwfcv    (3" 
(9) 



The distance of the horizon from the geometrical optics 
viewpoint is determined from the condition that a reflected wave 
with a real phase could reach up to this point.   The least value 
of t for which this still occurs is t = p(0).   This value must 
simultaneously be a root of Eq. (39) • 

Therefore, the following relation must exist between x, y and y* 

s"2* jvflM -u
P(ö) +yj^iu) -p(o) (40) 

I 

which yields the formula for distance to the horizon under 
normal refraction. 

The more exact expression in Eq.  (31) for F shows that it is 
already impossible to use Eq. (35) at t = p(0).   Actually, the 

quantity §    becomes zero at this value of t and it is, understandably, 
inadmissible to use formulas (33) and (34).   Nevertheless, it can 
be conside*<.il mat the value of x, determined from Eq. (40), 
approximately gives the boundary defining the line-of-sight region 
where the residue series is applicable.    In other words, it can 
be considered that the field amplitude starts to decrease rapidly 
when x, increasing, passes through the value in Eq.  (40).   The 
terminology "horizon distance" can be used in diffraction theory 
in this sense. 

4.   ASYMPTOTIC INTEGRATION OF A DIFFERENTIAL EQUATION 
WITH A COEFFICIENT HAVING A MINIMUM 

The modified index of refraction will not be a monoton?.: 
function of the height in the presence of super refraction but it 
will have one or more minimums corresponding to the separate 
waveguide channels.   We will consider the case of a single minimum; 
we will call the corresponding height the inversion height and 
will denote it by h.. 

(10) 
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The coefficient p(y) proportional to M(h) of the differential 

equation 

d2f 

d7 
+ P(y)f = tf (41) 

will also have one minimum at y = y. corresponding to h = h.. 

We will consider p(y) to be an analytic function of y.   The 

equation p(y) = t will have two roots in the region interesting us: 

y = b.   and y = b,r 

Both roots will be real for t real and lying between p(0) and 

p (y.); the roots can be complex for other t values. 

We must have such an asymptotic expression for the functions 

f.(y), f2(y) as w<>uld be valid uniformly for all the values of 

y and t considered, with the exception of the value t = p(y.) at 

which the roots b. and b, coincide. 

The expressions used in section 2 for f. and f, in terms of 

the Airy function are not applicable here. Its validity was based 

on Eq.  (41) reducing approximately to 

,2 d w 
—T £w= 0, (42) 

in which the coefficient for the unknown function now has the same 

monotonic character as in the initial equation, by means of the 

substitution Eqs.  (24)-(25) which defines  € as a holomorphic 

function of y.    Now, we must take as the standard equation 

•M-4(k2  +v)g = 0 (43) 

for the parabolic cylinder function instead of Eq. (42) for the Airy 

function, since this is the most simple equation in « hich the 

UU 
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coefficient for the unknown function has the same charactoer (with 

a single minimum) as does the coefficient p(y).   It is necessary 

to select the substitution relating £ to y so that the quantity p(y) „. 

becomes aero simultaneously with the quantity 4£   + v and so 

that the correct asymptotic expressions would be obtained for 

large values of these quantities.   The substitution 

/ 

c 

-2i^T* 
(44) 

satisfies these conditions under the condition that the parameter v 
is chosen so that 

b2 2i>/7 

J\fp(Y) - t dy =j J s/rTZdt:. 
b. -2i/TT 

The integral in the right side of (45) equals 

(45) 

2i>/7  

J  / s/P + 4v d? 
-2i>/7 

= 1TTV. (46) 

Consequently, Eq.  (45) can be written thus 

b„ 

iirv =  Jsfay) - t dy. (47) 

(12) 



It gives  v as a function of t.   This function will be holomorphic 

near t = p(y), namely, we will have 

p(yj -1 
V  = .M_nV    I       +   ... 

Putting 

W fyJJ 

7 

S = Op(y) - t dy 

(48) 

(49) 

S   =i o     2 
r1 > J^>(y) -tdy + i   J   ^(y) -tdy, (50) 

we can write the substitution (44) as 

c 
S-So = 2   j7c2 + 4vdC (51) 

The first part of this expression equals 

C      

\ jjt} + 4v d£  =-~C>^2 + 4v +ln«   +J* + 4v)   --£ In 4v. (52) 

Hence we can conclude that the quantity S - SQ +-71« v wi*l De a 

holomorphic function of v near v = 0 for f"7^ an<* the quantities 
S - S   --5 In v and S will be holomorphic for £<0.   But since 

we know £< 0 at y = 0 (on the earth's surface),   the sum S   ♦•jlnv 

will be a holomorphic function of v.   This remark will be needed 

later. 

(13) 
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The solutions of Eqs.  (41) and (43), in the asymptotic approx- 
imations under consideration, are related by the relation 

Solutions of £q. (43) are functions which are expressed by means of 

the parabolic cylinder function D (z) which satisfies the equation 

(53) 

dzT n (54) 

The functions D (z) have been well investigated.    We will not 

enumerate their properties but will refer to the book by Whittaker 

and Watson "Course of Mordern Analysis" where the principal 

formulas are given.   The following series can be taken as adefiniti 
Dn(z) ion 

DJ»> r^nT —e 

exp( 
Equation (43) i. obtained from Eq.  (54) by replaci 
-i A) and n+ , bv iv.   n» *„,,,.*;  

(55) 

2 by iv.   The functions 
ing   Z oy    £ 

gj (C)  = D (e 
■*T 

IV 
c>. (56) 

g2<0  = D 

will be solutions of Eq. (43).   The 

(14) 

i <e     0 (57) 

quantities g^) and g^) will be 

■:m 
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g^(0     (58) 

r£-+ y 
4      4    in •e <C). 

gl 

Asymptotic expressions for g,(C) and g2(C) are essential to us, 

In the region adjoining the positive real axis, we have 

g^O = e 

irv. . IT      . |     ,.      if      .2     , 
"4+1T    XT ,lv"Tf,    1V   "2v- H        iv2 - 2v - rj  \ 

(60) 

Using Eq.  (52), we can also write 

g^C) 

IT v,  .rr        .v , .v . 
7+T     "12 + 1Ilnv 

4/1 
^ 

+ 4v 

e 
explf Ul^+4vdt].    (61) ^F77 

The latter expression is valid also for large v.    The asymptotic 

expression for g2(0 is obtained by replacing i by - i. 

In order to obtain a formula valid near the negative real axis, 

we must use relation (58).    We will have 

l!«)  * 

3VTT     .3ir    . v . iv , . 
- — - lT mi1 4Tin v 

e e 

V 
exp[f 

+ 4v 
frf^TT dvj+     (62) 

(15) 
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wir..ir      .v     iw 

nF^T #* + 4v eXpt^A   +4vdw], 

We are now in a position to construct the solution of Eq. (41) 
which satisfies all the requirements. 

Let us put 

Cjfv) = eö*e22 ° (63) 

Because of the properties of S noted above, the exponential 
Eq. (63) is a holomorphic function of w also near  v = 0. 

The function 

in 

Vy.t^c^yS^) (64) 

I il 

11 

HI 

will be a suitable solution of the equation for the height factor.   Above 

the inversion layer (for S - SQ» 1) this function has the asymptotic 
expression 

*7 
fl(ytt)=1—1 **-**<>. 

ypiyP" (65) 

which results for Eq.  (61). 

Below the inversion layer (for SQ - S^l) the asymptotic expression 
for fj(y,t) will be 

Vy.t)* Y,(V)   ^    e eiS-2iSo + e^B llv;   4/ = ■ e 

yp(y) -1 

_-2L 
©     4    -iS 

4/————e       » 
yp(y) -1 

(66) 

(16) 



Z    i(v - v In v) 

Using the known asymptotic expression for the function F(? - iv), 

it is easy to show that the function X»(v) tends to unity for large 

positive values of v.    Inasmuch as the second term ir. Eq.  (66) become: 

small in comparison with the first for  v ?? 1 , both expressions 

for f,(y>t) will then agree in form.    However, it is essential that our 

expressions for f,(y, t) be valid not only for large, but also for small, 

values of v down to v - 0 and that they be holomorphic functions of v 

near v = 0. 

The appropriate expressions for f2(y,t) are obtained from the 

preceding by substituting - i for i.    In order to write *hem expli- 

citly, let us put 

c2(v) = e 

. IT It V 

T •i£-ilnv-So) 
(68) 

vrr 

X2(v) ^2TT "2   _ -i(v - v In v)  j e e 
T(-| + iv) 

(69) 

Then 

f2(y,t) = c2(v)\/^g2(C), (70) 

and the asymptotic expressions for f2(y,t) will be following 

(17) 

i 
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-4 
*2<Y. t)  - 4/.  e '* + 2iSo ; for S - S >1 

-^>(y) -1 ° 

*2(y.t) =X2(v) r   e      iL 

(71) 

-iS + 2iS    ,     - VTT        e _       iS      .„„ 
0 * e        f.    . e (72 

(y) -1 V^71 

for S    - S^l 

Hence, the problem of the asymptotic integration of the height 
factor equation has been solved. 

5.    INVESTIGATION OF THE ATTENUATION FACTOR 

We must now substitute the expressions found for f.(y, t) and 

f2(y, t)   into formula (22) for F and we must investigate the attenuation 

factor V or the function   f related thereto.    For simplicity of writing 
we will limit ourselves to the q = 00 case, which corresponds to 

horizontal polarization.    The function F becomes in this case 

i 

•3 n Is 

Hi 
% 
Al 

II 

F(t, y, y',  00) =■ f2(o.g 1 f tAu't) \ 
nrfl,y'',)'  Vv.O-ro^iy«)  •    (73) 
12 [ ) 

The Wronskiian Dj2 for the functions (64) and (70) equals the constant 
value 

'12 = - 2i, (74) 

which is most easily derived from the asymptotic expressions (65) and 

(61).   We will assume that y>y.  so that S(y') - S 3^ 1 and let us 

consider two cases:   when the second height is also high and when it 

is below the inversion layer.   In the first case, we will consider 

(18) 
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S(y) " S ^1» which permits expressions (65) and (70) for f.  and f, 

to be used.   In the second case, we shall consider S    - S(y)^l and o 
we shall use expressions (66) and (72). 

In the first case, we shall have 

F =7 
eiS(y') 2iS 

sJW') - t \/p(y) 

-irv 
-iS + 2iS    , e I « e o + _ -irv 

2iS 
iX2e      °      iS-2iS 
 2-ST-* ° 

+ iX^ 
(75) 

The separate terms of this expression admit of an interpretation 

on the basis of geometric optics.   It is evident that a wave going 

from above downward must have the phase factor e       and a wave 

going from below upward must have the phase factor e Expression 

(75) shows that there is only one wave going from above downward, 

namely, an incident wave with the total phase 

w(t) = xt 4 S(y') - S(y) (76) 

we added the term xt here from the exponential in integral (23) . 

This phase agrees with the phase Eq.  (36) of the normal refraction 

case, as is natural,  since this wave did not reach the inversion layer. 

As regards the waves going upward from below, they will be an 

innumberable set;   these waves are obtained by expanding the second 

term of Eq. (75) in a power series in e"   .   They will correspond 

to waves, multiply reflected from the earth's surface and from the in* 

version layer.   The phase of waves reflected once from the earth's 

surface will be 

<t> (t) = xt 4 S(y') + ft(y; + arc- 
Xl (77) 

(19) 
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This expression differs from Eq.  (37) in its last term which cannot 

be obtained from geometric optics.   This term equals 

*2 arc = arc- 
Xl 

r(J -iv) 
;——- = arc— ■■■< ■+ 2v In v - 2v. 

r(* + iv) 
(78) 

It becomes zero for large positive v but it plays an important part for 

small v since, because of it, the whole phase $(t) remains a holo- 

morphic function of v near v = 0, in other words, near t = p(y). 

Now let us analyze the case when the point y is below the in- 

version layer, where S    - S ^1. 

Using expressions (66) and (72) and the equality 

x1(v)x2M«e"2,rVss1' 

we obtain after certain computations 

(79) 

\£<y') - t ^p(y) - *le 

sinS(y) 
■2iS        ,   - itv (80) 

o - le 

1 

: i 
i 

! I 

In this case, there is not one but an innumerable quantity o£ 

waves going downward from above since waves reflected from the 

inversion layer as well as from the upper boundaries are added to 

the incident wave.   Moreover, there is an infinite quantity of waves 

reflected from the earth and going upward from below.   All these 

waves are obtained formally by expanding Eq. (80) in a geometric 

progression in powers of e"*. 

The total phase of waves not reflected from the earth equals 

u(t) sxt + S(y') -S(y) -arcXj 

(20) 

(81) 
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w(t) = xt + S(y') - S(y) + arc- 
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(82) 

and the total phase of a wave reflected once is 

<fr(t) = xt + S(y') + S(y) + y arc--=- (83) 

The expression for w(t) does not agree with Eqs.  (36) or (76), which 

is natural, since the incident wave passed through the inversion layer. 

Expression (83) differs from Eq.  (77) by the additional term having a 

factor -S-. 

Up to now, we spoke of the phases of the different terms of the 

integrand.   An integral over t in the attenuation factor corresponds 

to each such term.    If these integrals are evaluated by the method of 

stationary phase, then each one gives a term in the attenuation factor 

which represents a wave with a phase equal to the extremum value of 

the phase of the integrand. 

It is understood that we use such a method of evaluating the 

attenuation factor only in the line-of-sight region; residue series must 

be used in the shadow region. 

6.    FORMULA FOR THE DISTANCE 

We defined the horizon distance for normal refraction (section 2) 

as such a value of the horizontal range x as would give the boundary 

between the region of applicability of the reflection formula and the 

region of applicability of the residue series.   For this value of x, 

the extremum of the phase of the reflected wave must be the least 

value of t for which the phase itself is still real. 

There are many reflected waves in the presence of super refraction. 

But we can expect that the principal part will be played by a wave 

(21) 
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reflected once form the earth's surface.   Inasmuch as the "horizon 

distance" is not a strictly defined concept, we rightly make it more 

precise by interpreting it as the horizon distance for a single reflected 
wave. 

The phases of a single reflected wa«re are found in sec. 4. 

According to Eqs (77) and (83), we will have for y'>Vj*, y>J§ 

y'   v  x 

<j>(t) = xt + //p(u) - t du + l</p{u) - t du + arc—— (84) 

and for y'^ y., y^y. 

yf         y  x 

<t»Ct) = xt + JVP(U) - t du + f^>(u) - t du + j arc—-5-. (85) 

!f   ,!i 

These formulas can be combined by putting 

y 
S*(y,t) «   r^p(u) - t du + -| arc-^-(y^y.) 

S*(y,t) =  fvp(u) - t du   (y<yi). 

(86) 

(87) 

Then, both for y^y. and for y<£y. we will have 

<j»(t) = xt + S*(y't) + S*(y,t). (88) 

Let us note that S* is a holomorphic function of t near t = p(y.). 

Reasoning as in sec. 2, we obtain the following expression for 
the horizon^distance 

\3t"* * Tt      Jt«p(y.) (89) 

(22) 



Let " * write this expression in a more explicit form.   Acording to 

Eq.  (48)   near t = p(y.) we will have 

v = 
p^) -1 

VZTTy-T (90) 

On the other hand, near v = 0 

,1 
1 r(2 " iv> 
z*TCZl  = (C + 2 In 2)v + 

rq + iv 
(91) 

and therefore 

1 x2 
Tarc-—=.= v (C - 1 ♦ In 4v) + ... , 
2 Xl 

(92) 

where C = 0.577 is the Euler constant.    Consequently, for y>y. 

^        du 

--3T 4 JjRsrrr wkr(c + 1-"lv, •  (93' 

This expression has a limit for t->p(y),   v->0.   The last term is 

absent for y<y. and the value t = p(y.) can be substituted directly 

into the integral.   Consequently, for y< y., we will have 

dS*   1   f du 
*"dt~~ 2 J yp(u) - p(yi) (94) 

The presence of the second term in formula (85) specifies the 

dependence of the horizon distance on the wavelength.   In order to 

clarify this dependence, let us turn form the modified x, y coordinates 

to the usual s, h coordinates, where s is the horizontal range 

(23) 
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and h is the height. 

Denoting the modified refractive index without the 10    by   u(h), we 
will have 

p(y) = 2m n(h), 

where m is the quantity Eq.  (4).    We introduce the parameter  T 

instead of t by means of the relation 

(95) 

»    2 t s 2m T (96) 
Then 

I     h   
A^M " t du = k J y/i^hj - U dh, 

xt = ksx. 

(97) 

(98) 

N ow, the quantity v will equal approximately 

The distance formula is obtained from the condition 

4"|£  =0for T    = u(h), 

(99) 

(100) 

where the phase $ is assumed to be expressed by the new quantities. 
Let us put 

F(h) = 
h 
f j.   ,,.dh_   , (for h<h.). (101) 

(24) 



y/ 

 !       r gW - t) 
V2u(h) - 2T V7TfTrLC + ln N/I^T)      J|C!®21 

(for h> h.) 

Then the formula for the horizon distance obtained from condition 

Eq.  (100) is written as 

s = F(h') + F(h) . (103) 

Let us compare the values of the horizon distance for identical 

heights but for different wave lengths.    The wavelength enters into 

the expression for F(h) only for h^h   and only into the logarithmic 

term.    Let the horizon distance equal a.   for   X = \, = "ra   and 
2ir 1 s, for   X = X_ s-rr— •    Comparing the difference of expressions (103), 

we obtain 

'2 " 8i =^%J lnT[ VFTh") lnx^-for h>hi 
(104) 

'2 - 8i =^nry lnTf ypkj in^Tfor h>hi 

(105) 

This difference depends only on the behavior of the modified re- 

fractive index near its minimum except for the ratio of the wave 

lengths. 
Let us apply our general formula to the case when the modified re- 

fractive index u(h) depends on the height according to a hyperbolic law 

!   (h-h)2 

u(h) = ^h.) +Y    h^^". (106) 

(25) 
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where a is the radius of the earth's globe;  I   is a parameter.    In 
this case 

n"(h.) = i'      a(h.+t) (107) 

The integrals in $(t) will be elliptic but they are evaluated elemen- 

tarily for T = n(h.) and we obtain the following expressions for F(h): 

where 

F(h) = V2a(h + X) + v5ät   4 

* y2— 1vvTT^nTr -»^rffrjr 
v . * 

for h<h. 

F(h) =V2a(h4l) + 2al - 

As 
v/a(h.+l)f ,       2k2(h4 + l)3, 

(108) 

(109) 

-  /a(h. 4t)   s/h 4a+0i. 4T        v/h   4% ^JT 

t 

fcr h^h. 

(110) 

Here 

C. = 7 In 2 - 4 + C = 1.429 (111) 

(26) 



For comparison, let us note that the horizon distance in the 

absence of refraction equals, as is known, 

s' =V2ah'   + y\JIäh (112) 

Hence, the increase in the horizon distance because of refraction 

equals 

s - ■• = [F(h') -\/Eäh\j + |F(h) ->/2ahJ . (113) 

We assumed in all the preceding reasoning that the heights h 

and h* are small in comparison with the radius of the earth a.   But 

the preceding formulas are applicable when a wave comes from in- 

finity (for example, <rom the sun).   The difference F(h') - ^2ah' 

has a finite limit for h1-* co, namely: 

.limiF(h') V5ah'J = 
h"*-o©           

_     Ai(h. + i)    \7h  + i +JT 
2at 4^—ln4,     + 

(114) 

As 

Replacing the first two terms in Eq.  (112) by their limit values, 

we obtain the following expressions for the increase in the horizon 

distance: 

s - s' = Zy/zäl  -i/2a(h + t) ~y/IdÄ\ + As + (115) 

JaÖTTTj   \pTTT +>/h + t        v/h.4i  +JT 
+VH     >.4t ^+rz »M ->£~ 

for h<h. 

(27> 
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• -  s' * 2/117  4^2a(h + i)   l/Hh ♦ 2As - (116) 

/a(h. 4t) J    NAT7*^7TT Vh. ♦ 1+-/T  I 

The "lead angle" 

6 « 8-8' 
(117) 

corresponds to this increase in the distance.   Since the present theory 

does not take refraction in the high layers of the atmosphere into 

account, it is necessary to add the value of normal refraction on the 

horizon to Eq. (117) for a comparison with the observed lead angle. 
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XIII. ON RADIOWAVE PROPAGATION NEAR THE HORIZON 
WITH SÜPERRBPRACTIOM 

V.A. Pock 
L.A. Vainshtein 
M.G. BeUcina 

This work is devoted to the computation of anomalous 
radiowave propagation near the horizon when an inversion 
layer exists near the earth (lAich is invariant in the 
horisontal directions) for several typical examples. Curves 
are constructed for the attenuation factor In the case when 
the transmitting antenna is situated high above the inversion 
layer and the receiving antenna is within the inversion layer 
at a low elevation (or conversely). 

The results obtained indicate the expediency of intro- 
ducing the horison in analysing very remote propagation, they 
give an estimate of the possible values of the attenuation 
factor at the horizon and also indicate the dependence of the 
attenuation factor near the horizon on the distance and wave- 
length. The results obtained can be of value in analyzing 
the propagation of decimeter, centimeter and shorter ware- 
lengths in the troposphere. 

1. INTRODUCTION 

The theory of radiowave propagation above a spherical earth in the 

presence of an inhomogeneous atmosphere for which the refractive index 

depends only on the height was worked out in the work of V.A. Pock (1,2). 

An investigation was given in the second of these works, of the attenu- 

ation factor in an inhomogeneous atmosphere near the horizon, where the 

concept of the horizon is defined for an inhomogeneous atmosphere of 

any kind. The definition of the horizon introduced in (2) in the case 

± 
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of an inhomogeneoua atmosphere without an inversion of the radueed 

lndax of rafraotioa coincides with the boundariaa of the shadow which 

results fron tha laws of geometric optics. If an inTaraion of tha re- 

duced index of rafraotioa exists, than tha horiaon is found from more 

exact «are considerations! la this caae, its etatement depends on the 

wavelength* 

If it is assumed that the attenuation factor dacreaaes rapidly 

with distance beyond the horizon, then (as was done in (2)) the range 

of the horiaon can conditionally be considered to determine the range 

of radioware propagation. Therefore, a simple formula is obtained for 

tha range of radioware propagation with super-refraction. The heights 

of the recoiling and transmitting antennas, the wavelength and the 

parameters characterising the M-profile all enter into this formal*« 

The range formula for a reduced index of refraction dependent on the 

height according to a hyperbolic law ((2), I 5) assumes an especially 

simple form« 

The analysis of very long propagation using the horizon concept, 

given in (2), requires certain improvements, however. Pirat of all, it 

ia desirable to clarify which values the attenuation factor at the 

horiaon assumes and how the attenuation factor near the horizon depends 

oa the distance, the wavelength and the parameters of the inversion 

layer (the height of thla layer, its average gradient, etc.). To do 

this, it is evidently necessary to evaluate the attenuation factor ia 

certain particular oaaes inasmuch as this problem is not subject to 

(2) 
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solution In a general form. Hence, if we explain how rapidly the at- 

tenuation factor decreases in the shadow region (beyond the horizon) 

and how rapidly it increases to a value of the order of unity when de- 

parting from the horizon into the line-of-sight region, then we there- 

by confirm to what degree the horiion determines the range of radio- 

wave propagation in practical cases. 

In view of the enormou? tedium involved in computation of the at- 

tenuation factor during sup at -refraction, the calculations can only be 

made for a small number of typical eases. Here it is impossible to 

perform any exhaustive calculations, as for normal radiowave propaga- 

tion. Hence, we were limited to the calculation of the attenuation 

factor as a function of the nondluensional coordinate C  in four cases 

which enabled the dependence of the attenuation factor on the horizon- 

tal distance between points, for a fixed M-curve and for fixed heights 

of corresponding points to be constructed for four wavelengths, re- 

ferred as 1:3*9*27 (see Section 7). 

In this way, it appears to be possible to make more precise the 

meaning of the range of the horizon and the range of propagation and 

to answer a number of questions formulated above, in particular, the 

question of the dependence of the very-long propagation phenomenon on 

the wavelength. 

Let us recall that the analysis of anomalous propagation given in 

(2) is applicable if and only if one of the corresponding points is 

above the inversion layer near the earth while the other point can be 

(3) 
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either within this layer or above it. Consequently, when computing 

the attenuation factor we were limited to the case when one point is 

high above the inversion layer and the other is within the layer at a 

height equal to one-fifth the height of the inversion point. 

2. ON THE HORIZON CONCEPT IN THE PRESENCE OF A 
TROPOSPHERIC WAVEGUIDE NEAR THE EARTH 

Let us consider in more detail the horizon concept when a wave- 

guide (inversion layer) exists near the earth. 

First, let us recall the ray treatment of normal and anomalous 

propagation (see (3)» pp. 16, 17). The reduced index of refraction is 

a linear function of the height for a homogeneous atmosphere. 

The rays, issuing from the source Q, have the shape of curves in- 

verted convexly to the s axis (Fig. la) on the s, h plane (s is the 

distance along the earth, h is the height). The horizon 00' is deter- 

mined by the ray Q00' which touches the earth at the point 0* To the 

right of the horizon line 00' is the shadow region which the field 

penetrates only because of diffraction; to the left is the line-of- 

sight region. The reflection formula, according to which the field is 

obtained as a result of the interference of the direct ray QP with the 

ray QP'P reflected from the earth, is approximately applicable for 

observation points in the line-of-sight region (to the left of the 00* 

horizon). 

Rays from the source Q located within an atmospheric waveguide, 

near the earth, of height h, (Fig. lb) are convex upward (from the s 

(4) 
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Fig„ 1, To the horizon concept. 
a - for normal refraction; 

b - for superrefraction - according to geometric opticsj 
e - for superrefraction - according to wave optics 
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axis) within the waveguide and are convex downward (as in Fig. la) 

above the waveguide« Consequently, the raj 01 passes into space above 

the waveguide but the raj 02 appears to be 'trapped1 within the wave- 

guide. These two kinds of rays are separated by the limiting ray QO 

which approaches the height h ■ h< asymptotically as s—»«» . Besides 

the direct rays, rays reflected from the earth, as 01* »l» for example, 

are incident on the space above the inversion layer and are separated 

from the trapped rays by another limiting ray QCPO' which approaches 

the height h^ asymptotically after a single reflection from the earth. 

All ray issuing from a source within the angle 000" formed by both the 

limiting rays appear to be trapped. 

In this example, the laws of geometric optics lead to the conclu- 

sion that a horiaon is absent both within and above the waveguide. 

Actually, direct rays issuing from Q within the angle 100 and reflected 

rays issuing from within the angle 1"Q0" pass through observation 

points situated above the waveguide to the right of the rays 1 and 1». 

They penetrate the whole space above the waveguide to the right of the 

rays 1 and 1' and, consequently, the region of geometric shadow and, 

therefore, the horizon are absent. 

However, it is easy to see that the laws of geometric optics are 

not applicable to the limiting rays 00 and QCO1 and to rays close to 

the limiting. From the preceding, it is clear that precisely these 

rays transport (according to the geometric optics laws) electromag- 

netic energy to long distances above the waveguide. Hence, there 

(5) 
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follows that way« considerations mist be drawn upon in order to SOIT« 

the quastion of the horizon and the range of propagation with super- 

refraction. 

This was done in (2) where it was shown that there is a certain 

boundary 0*0* (Fig, le) in the space above the waveguide, to the right 

of which a raj reflected frost the earth cannot penetrate« This boundary 

0*0* is the horizon in the presence of an inversion layer since to the 

right of this boundary, i.e., in the shadow region, the field (as in 

Pig. la) can only penetrate because of diffraction» 

Besides the boundary 0*0J there is still the boundary 00, to the 

right of which direct rays which do not experience reflection fre* the 

earth, cannot penetrate* The boundary 0*0* is to the right of the 

boundary 00 since a ray, when reflected fron the earth, appears to be 

to the right of a direct ray parallel thereto (see the rays 01 and 

Qlnl' on Figure lb). Direct rays do not pass into the 00 - 0*0' band, 

consequently, the total field in this band is not subject to the ray 

treatment. The total electromagnetic field to the left of the boundary 

00 is obtained by the superposition of the direct and reflected rays« 

Because of such a value for the boundary 00 - the limits of ap- 

plicability of the reflection formula - it is expedient to introduce a 

special designation for it: we call it the direct wave horizon. In 

contrast, we call the boundary O'O'the reflected wave horizon, tfcile 

these horizons coincide for normal propagation, they must be differmti- 

ated in the ease of anomalous propagation« 

(6) 
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The horizons 0*0' and 00 on Pig, lo replace the limiting rays 

QOMO' and 00 (Fig. lb), obtained from geometric optics, in the wave 

picture. 

These general considerations will be made more precise In Section 4, 

3. FUNDAMHITAL FORMULAS 

The attenuation factor V in an inhomogeneous atmosphere for which 

the refractive index depends only on height can be represented as the 

contour integral« 

(1) V(x,7Sy) - «p(-i^) ^/e1** F(i;,y»y)dt 

When an inversion layer is present near the earth, if one of the corre- 

sponding points is above the layer and the other is within it, then the 

following approximate expressions (see (2), Section 4) can be taken for 

the integrand F: 

(2) 
exp(i[s(y') -2s]]sinS(y) 

p(t,T«y)   •   —-——-——*-± 2il _■• 
>6Fr^t j/plyT^t [XM exp (-2iS0) - i."^] 

Here y1 and y are the nondimensional heights of the source and the 

observation point (y* > y, where 7* > f±   and j*c 7$»  where y^ is the 

nondimensional height of the inversion point); x is the nondimenslonal 

distance between the source and the observation point and p(y) is a 

function related to the reduced refractive index M(h) by the formula» 

(7) 
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(3) p(y) - —7 M(h) - 2m2 

1CP 
(n-l.g. /ka\ 

* 

«here n is the refractive index of air; a is the radius of the earth. 

We assume that the function M(h) has the sans shape as on Pigs« lb 

and 1c. Consequently, for given t. the equation 

(4) p(y) - t ■ 0 

has two roots y^ and y2. These roots are real and positive for p(y.) 

< t <p(0); they are complex conjugates for t< p(y^)| they coincide 

for t « p(y^) and then y^ " T% " ?i* *° 8enera^# there can be other 

roots (negative or complex) besides these two but they are of no value. 

The quantities S(y). S(y') and S0 are given by the formulas: 

(5) 

S(y) - J yp(f) - t dy } Sift)   . f ypCy) - t dy 
o o 

Ji J2 
S0 - i j  /p(y) - t dy ♦ i j  /p(y) - t dy 

wherein the radical /p(y) - t must be taken in the arithmetic sense 

for positive real y for t < p(y,). In order io evaluate S0 for 

t < pCy^), the radical j/p(y) - t must be continued analytically into 

the region of complex y. We will consider that p(y) is an analytic 

function (see Formula 0.8) below) admitting of such a continuation« 

(a) 
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The quantity y is determined from the formula: 

The quantity f is also real for real ralues of t, where the sign of 

V is chosen from the following relations. The function p(y) can be 

replaced, for y « y~, by the first terms of the Taylor series 

p(y) - p(yi)*~P» (y^Cy-y^2 

and the integral (6) can, afterward, be calculated and we obtain the 

following approximate formula for t« p(y,) 

(7) v - 
pfrj) - t 

y^Fcyp 

In conformance with this, we consider v>0 for t < p(y.) and V*< 0 for 

t >p(7i)« Formula (6) is rewritten thus for p(y^)< t <p(0): 

<*) V   - £>J     yTTplyl dy 

where /t - p{y) > 0 and y^< y2 . 

The function X^V") i» determined by the formula: 

(9) 
Y      ySr exp [- <£ r ♦ l(>r . y> in ^] 

(9) 
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where the principal value is taken for In  y at y>0   jt< p(y^)j  » 

Hence 

(10) X(y)-+1      as   S-+CO 

When evaluating the attenuation factor for large values of y, it 

is necessary to take into account that the function p(y) must satisfy 

the following relation as y—► «» : 

en) £. [*> - '1 - ° 

Consequently, representing S(y') as follows: 

r y 
s(y')  - ]   t/y^f dy ♦ j   [yp(y) - t - yT^t] dy 

we 
see that the first component increases without limit as y'—,.-> (the 

2 4k __x Infinite part equals -f-y' - t-yy1) and the second tends to a finite 

limit if the difference p(y) - y approaches zero rapidly enough (for 

example» just as for the function p(y) according to (18) « 

Let us introduce the quantity £ as the limit 

(12) 
r    .  li"[s(y») - 2SC «4- y«  ♦ t W 
^o   y_*.«»L 

Substituting the following for large values of y« 

»13. 

s(y') -2S0 - -jy'""-tyyT*^ 

and replacing the quantity   vp(y') • t   in the denominator of (2) by 

yy~' , we obtain the attenuation factor as 

(10) 
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(13) 

«her« 

(U) 

and 

(15) 

7(x,y»,y)   -   £L exp^lly* V^y) 

WZ .lCt*(W) dt 
exp -: 

*(t,y) 
expO^) sin 3(y) 

jflyT^t [X(y)«q>(-2is0) - i #-r1 

The function 71(£,y) it related to the attenuation factor 7 by the 

sane formula (13) as in the theory of normal radiowave propagation« 

Just as in this latter theory, it is natural to call 7^ the attenuation 

factor of plane waves. Since we shall evaluate only 7^ subsequently, 

we shall often designate 7, as simply the attenuation factor« 

Let us introduce the variable £ which equals 

(16) £ - x - yf1 

into 71# The geometrical meaning of £ follows frca Pig. 2, where T 

denotes the point at which the incident 

plane ware (or spherical wave from a re- 

mote source) touches the earth's surface. 

The quantity £ is related to the angle 

6 - TCP (P is the observation point, C is 

the center of the earth) or with the dis- 

Pig. 2. Geometric meaning  tance • - aO along the earth which cor- 

responds to it, by means of tht relations 

(11) 
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(17) £ - m9 ■ a|> j 
TO 

Let us note that the point of tangency T corresponds to the path of a 

ray In a homogeneous atmosphere. 

The infinite contour C in the plane of the complex variable t, 

over which the integrals for 7 and 7^ are taken, is arbitrary to a con- 

siderable degree and should be chosen so that the integral can be 

evaluated with the least difficulty, particularly, in such a way that 

the principal part of the integration would be as small as possible. 

Hence, the contour C should encircle all the poles of the integrand in 

a positive direction so that thay would be above the contour C. It 

would appear to be more convenient to take the contour shown in Pig, 3, 

with its break-point either at t - p(y^) 

\Ct  t - n(v4) 
olane        or 8anev'nat to *ne *•** (*•• «* end °* 

_____ >   »  Section (6) as the contour of integra- 

Pig. 3. Contour C in the    tlon» 
complex t - p(y^) plane. 

As is seen from (5) and (6), integrals of the form j /p(y) - t dy 

for different t and for different limits of integration, including the 

complex, enter into the integrand ^(t,y). In order to facilitate the 

evaluation of these integrals, the hyperbolic law (54) was taken for the 

reduced index of refraction M(h) and, consequently, the function p(y) 

is obtained according to (3) *• 

(18) p(7) " Pfo) ♦ —T"*— 1   7 * 7f 

(12) 
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whereupon there result« from (11) that 

(19) P<7i> 
* * *i 

Two parameters, y^ and js are in (18), where y^ is the nondimenaional 

height of the inversion point. It is also expedient to introduce the 

special notation 

(20) 

then 

(21) 

T*7< 

p»(y.) - A 

Let us not« that (4) is a quadratic equation with the two roots y^ and 

72« which join at t - p(y,), in the ease of the hyperbolic law. 

The integrals which we need in the case of the hyperbolic law are 

expressed through elliptic integrals of the first and second kinds. 

However, in the cases we considered, it appeared to be more convenient 

to evaluate these integrals by expansion in powers of the parameter a , 

where 

(22) 
2   t - p(y4 ) 

a  - 
41 

It is sufficient to take several of the first terms in these expansions, 

which also contain logarithmic components, since the principal part of 

the integration over C corresponds to very small values of the para- 

meter a2. Later terms of the expansion are essential for the large 

value« of the parameter I which we took (see the beginning of section 5) 

(13) 
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only on those parts of the contour where the whole Integrand is Itself 

small. 

In conclusion, let us dwell on. the analytic continuation of the 

functions F(tt7',y) and ^(t,y) over the whole complex t plane« The 

fact is that the quantities S(y), S(y»), S and X(V), which enter 

into these functions, are originally defined only on the real axis for 

t < p(y,) (y- > 0) where the arithmetic values were taken for the 

radicals  Vp(y') " * and  -^p(y) - t. However, knowing the Inte- 

grand at t p(y^) appears to be sufficient only for calculations with 

the reflection formula (see Section 4)* The integrands must be known 

for complex t in order to calculate the contour integrals, and this is 

accomplished by using analytic continuation. 

Here, it must be kept In mind that the exact functions F(t,y',y) 

and  "¥ (t,y) have no singularities at the point t - p(y^). However, 

the asymptotic expression (15) for the function Y (t,y) has a singular 

point (a branch point) at t - p(y) (for expressions -vp(y) - t and for 

S(y)) and at t - p(0) (for S(y) and £Q). These singular points are 

obtained because we used the asymptotic expressions. Actually, there 

are no branch points since the exact integrand must be meromorphie« 

Consequently» we bypass the »apparent singular points' from below by 

considering, for example, that arg[p(y) - t] - W    for t > p(y) and 

that */p(y) - t • 1 ft - p(y), where y t - p(y) > 0. In substance, 

this bypass is conditional since (2) is not applicable for t > p(y) 

because of the so-called Stokes phenomenon. This phenomenon can only be 

<H) 
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neglected when the section t > p(y) gives a small contribution to the 

value of the contour integral, as occurs in the cases which we consider. 

The check calculations which we Bade by using parabolic cylinder func- 

tions (see (IQ,  Section 3), which give a more exact asymptotic repre- 

sentation of the integrand ^(t,j)t  confirmed both the qualitative and 

the quantitative validity of the results obtained by using (15)* 

The function if (t,y) also has poles corresponding to the roots of 

Equation (45)* Vhen the poles approach close to the contour of inte- 

gration, they must be bypassed from below. 

4. REFLECTION FOHHÜLA 

It is natural to evaluate the attenuation factor in the line-ef- 

sight region by the method of stationary phase since this method gives 

the transition to the laws of geometric optics which is applicable far 

enough from the horiaon. The method of stationary phase can be applied 

to the integral of (14) as follows. Let us represent the integrand 

on the real axis as: 

(23) 

where 

(24) 

(25) 

2   vftyT^t | XM I (l - A) 

ntt)   -   4o - S(y) ♦ 2So - arg XW 

f(t)   -   f0*S(y)*2S0-arg  X(v)   - ß(t) ♦ 2S(y) 

- *rg X(V)   -  V la Y - r ♦ argf /| - ±y\ 

(15) 
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The following expression oaa be written for all the integrand« in 

(14) for real ti 

(27) 

«here 

(28) 

ift ^  i   •**<*>-.if U> 

2 >ftr)-t|XMia-A) 

<»(t) - <t ♦ fl(t) 

?(t) - ft ♦♦(t) 

Since V  is also real her«, then 

(2») \X(A ■ vSTT55^ 

and if V > 0, then 

(30) |A| -    /   I JiTr 

The last fonnla «hows that the absolute value of A is lass than 

unity (in particular,|A|- i for V - 0) if V>0   [t <. P^)] «* 

it tends rapidly to sero as V increases. Consequently, if we should 

seek the stationary phase point at t < p^), we can neglect the phase 

of the denominator 1 - A . then the stationary phase points ^ and 

t2 of the first and second eoaponsnts in the right side of (27) are 

obtained fro» the equations 

(31) eVCtj.) ■ 0 |  ^(tj) 

16 

-'Ht"# 
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or 

(32) f- -Ü'C^h  ff- -#»(4) 

where th« valuta of t^ and t$ art different for given £* and y. 

Calculations show that the function! -&'(t) and «#'(t) have a 

maximum. Consequently, ws find two valuts of t^ and two valuta of t2 

(at least, if <£* is not too large). Only values of t^ and t2 should be 

taken which correspond to the left half of the curves t < p(j±)  (**< 0) 

inasmuch aa the phase of the denominator 1 - A can be neglected only 

for these values «hen determining the stationary phase points« 

Finding the points t^ and t2, we can evaluate (14) by applying the 

method of stationary phase to each component of (27)» Thus» ws arrive 

at the reflection formula for the attenuation factor V,* 

expfwKt,)]  A(ti)  exp[*Kt2)] A(tO 
(33) Vi(C»y) - :      *       ■  -      J  j — 1W   T^yT^tn^?^^^ 

where 

(34) A<t) 
|X(y)j tt-A) 

The first term of the reflection formula (33) it the ground wave, 

the second term it the wave reflected from the earth* This formula has 

the same structure as the usual reflection formula of geometric optics, 

however, corrections, arising in tits exact analysis of wave passage 

through a layer adjoining the inversion point, art reflected therein« 

Let at nott that t^ and tg dterettt at (  dtertattt and tot values 

of V corresponding thereto increase. It it possible to writt for largt 
enough positivt V 

(17) 
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,    i 
■I     1 

(35) A -   0)       X(»0   ■   lJ      A   -   1 

and, constantly, tha nora simpla axprssaions can bo uaad for tha 

Q(t) and   $(t) funetiona 

fl<t)   -   S0-S(y) 
(36) 

whara 

$(t)   -   S0*S(j) 

^-4^-^i^-*^*^] 
Tha raflaetion formula (33), for such simplifieations, transform 

into tha usual rofloetion formula resulting from tha laws of gaomatrie 

optic* in an inhomoganaous atmosphara, Tharafora, th« lattar it ap- 

plicabla to raja sufficiently far fro» tht limiting rajs 00 and 00*0 on 

Pig, lb, nor« exactly, to thoas rays for which V(t^) and y(t2) aro 

largo anough poaitiTs numbers. Aa it is easy to cons War, wo have 

V » 0 for tha limiting rays thamsalras and gaomabrie optics is not 

applicablt to them« 

Returning to tha ganoral reflection formula (33), 1st us introduos 

tha following notation for tha maximum values of -Ä«(t) and -$»(t)t 

0«)       ^ - [-flfWL * fz  ■ [-ft*)]»« 

Because of (2k), tha following inequality is always satisfiads 

(39) Cx < C2 

Od) 
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Hence, wo see that the stationary phase point t^ and tg can only be 

found for both components in (27) if £<£]„•   Th« «quation A»'(t) « 0 

has no real solution for t>(\ *nd th« ground war« is not expressed by 

too first component of (33)«   Consequently, ths value { » fL deter- 

mine« ths horison of ths ground wares (so« Ssction 2)»   Similarly, th« 

ralu« ( m »2 dstsmln«« th« horison of th« waves r«fl«et«d fro« th« 

earth« 

Th« physical waning of fa *• th»t tne •lactroaagnetie waves 

•soap« in th« C>Ci region only hscaus« of diffraction, consequently, 

t *  ^2 is ***• boQndAI7 °* **»• •tafor region.   Th« physical waning of 

(^ is that r«flaction foraula (3#) is applicable for C< (+» consequently, 

C m(\ i» th« boundary of th« lin«-of-sight region.   Th« region 

%i<  >   < >2 *• ***• ioteraediate region between both horisons. 

Since th« aaxinua values of the functions   -A'(t) and   -$'(0 are 

attained n«ar th« point t • p(y£>, than th« quantities 

«ill b« T«ry clos« to th« quantities d«temined by (38), as we will show 

by examples la Section 5*   Consequently, th« location of th« horison «an 

bs d«t«min«d approximately by a formula auch as (40), which is auch «or« 

staple than to construct th« graph« of th« function«   -XI* (t) and -4»(t) 

which ar« r«quir«d for th« use of (3d).   Th« foraula« (40) for th« hyper- 

bolic law (li) reduce to 

(U) Cx  -   \ - 0(y) J    Cz   -   0, ♦ 0(y) 

(19) 
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where 

(42) 

(43)    Q(y) 

and 

(44) 

iff    vr* 1$   yr 
"^ -—*TFTf * — C, ♦ —ln(r>) 

yf ♦yfT7    y***y& 
ln-p* ■ ■ - In *" 

y* -ysr**    /*~-y* 

C,   -   C*71n2-4   ■   1.429 

(C is Euler's constant). 

The second formula of (a) gives (115) of ß] for the distance of 

the horizon of the reflected waves when the transformation is made to 

the usual (dimensional) coordinates. As we already said, the first 

formula determines the distance of the ground wave horizon. 

In conclusion, let us note that reflection fonwla (33) is applica- 

ble to the calculation of the attenuation factor Vi almost up to the 

ground wave horizon I"^ itself. 

5. NUMERICAL RESULTS IN NONDIHEWSIONAL COORDINATES 

We chose the following numerical values of the parameters which 

enter into the function p(y) formulas &ft)-(20j] when calculating the 

attenuation factor V± for a hyperbolic inversion laws 

TABLE 1 

Jo. 7i y X Pfrl) 

216.41 
105 

50.4ft 
24.27 

p(0)-p(yi) ..   r 
1 
2 
3 
4 

10.40 
5 
2.40 
1.16 

19..61 
95 
45.67 
21.95 

206.01 
100 
43.07 
23.11 

0.542 
0.260 
0.125 
0.060 

2.0ft 
1 
0.4ft 
0.23 

• ' 

(20) 
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The functions p(y) for the values of the parameters selected are 

shown in Pig. 4* The choice 

we Bade permits the propaga- 

tion of four wavelengths« 

which are referred to as 

1:3:9527, to be calculated for 

a specific K-profile (see 

L 3 4 H<J - PtyfJ 
Fig. 4. Graphs of the function p(y)   s«*tion 7). Here the first row 
for the parametric values of Table 1»   _ _ ., ,       . , r of Table 1 corresponds to very 

short waves and the fourth row corresponds to very long wives. 

We took y - fJL in all oases, i.e., we assumed the height of one 
5 

of the corresponding points to be equal to one fifth the height of the 

inversion layer. We took the other point at a great height above the 

inversion layer - so great a height that the attenuation factor ?i(f,y) 

of (13) could be used. 

The four curves of the attenuation factor ¥^, which we calculated 

as a function of the variable C» *re &*▼« on Fig. 5. The subscripts 

26 jo 35 4© 4S «To €S$ 
Fig. 5« Oependeac« of tue attenuation factor F^ on £ 

Curves 1,2,3,4 correspond to the numbers of the rows of Table 1 and to 
the number» of the curves of Fig. 4. 

(21) 
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1,2,3, and 4 on the curves show to which row of Table 1 and to which 

p-curve of Pig» 4 the given curve for the attenuation factor corre- 

sponds. The point f, on each curve marks the location of the ground 

wave horizon and the point V% marks the location of the horizon of 

waves reflected from the earth. The points f0 near the origin, which 

are provided with the same subscripts 1, 2, 3, and 4» determine the 

horizon (the line-of-sight limit) for a homogeneous atmosphere; the 

corresponding values C0 *re obtained from the simple formula 40 ■ if» 

As is seen, long distance propagation occurs in aU four of the 

eases considered, and as should be expected, the most sharply expressed 

is in Curve 1. The phenomenon of long-distance propagation attenuates 

monotonieally when the transition is made to Curves 2, 3, and 4, how- 

ever, the attenuation factor |v{» 0.1 for £* 5 according to Curve 4 

while \\\  assumes a value four orders lower (jvj **  0.000013) for 

the same C and y but in a homogeneous atmosphere. 

The values of the function I Vjl at the horizons f^ and T2 are 

given in Table 2« 

It is seen therefrom that the values of the attenuation factor at 

both horizons JT\ and F2 vary within sufficiently wide limits, from 

3 - 3,5 times. The values of |V\j at the F0 horizon for normal 

propagation and for the same values of y are given for comparison on 

Table 2« A comparison of the columns shows that the values of the at- 

tenuation factor at the horizon for normal propagation have approxi- 

mately the same scatter as for anomalous propagation to the f^ and 

F2 horizons, because of the dependence on y. 

(22) 



370 

I 

'A 1 
■I 

Table 2 Table 3 

No. ri r* 
r 

0 7 No. fi <i ?a 
1 
2 
3 
4 

0.096 
0.095 
0.047 
0.031 

0.070 
0.080 
0,035 
0.023 

0.24 
0.19 
0.14 
0.083 

2.08 
1 
0.48 
0.23 

1 
2 
3 
4 

49.11 
28.56 
16.08 
8.67 

49.U 
28.56 
15.99 
8.45 

52.26 
30.74 
17.52 
9.52 

52.26 
30.74 
17.50 
9.50 

It can be noted that a sudden variation in the character of the 

propagation does not occur at the T\ and TV horizons: The attenuation 

factor starts to decrease monotonically in the line-of-sight region to 

the left of both horizons. In particular, this leads to the attenuation 

factor being 2-4 times less at the I\ and F, horizons, according to 

Table 2, than at the T^ horizon for normal propagation. Such a be- 

havior of the attenuation factor is apparently explained by diffraction 

(more accurately, wave) phenomena, taken into account by the reflection 

formula (33) and not included in the laws of geometric optics, having 

value not only beyond the T^ and ^3 horizons but to the left as well. 

In order to explain the applicability of the simple formulas (40)- 

(44) to compute the distances of the T.  and F, horizons, let us com- 

pare the results which they give in the cases we considered with the 

results obtained from formula (38). 

Table 3 shows that both formulas give very close numbers. Conse- 

quently, the simple formulas of (2) can be used to compute the distance 

to the horizons in practical computations. 

6. ATTENUATION FACTOR IN DEEP SHADE. RESIDUE SERIES 

It is convenient to investigate the attenuation factor in deep 

•hade by using the residue series which is obtained from the integral (14) 

(23) 
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by the usual method (see Cll» Section 6}„ In order to obtain the 

residue series, it is first necessary to obtain the exact location of 

the poles of the function $" (t.y), i.e., the roots of the equation 

(45) 1-A - 0 

Those roots are found near the contour C (Fig. 3) or within it« If we 

denote 

(46) L\   • t - p(y1) 

then the values of L\% tor the roots which we found fora Table 4 in 

which the first column shows the number of the row in Table 1 and the 

second column shows the number of the root for this case. 

Table 4 

No. * At» 

1 0,10653 ♦ i 0,00019 
2 -0.06364 ♦ i 0.05523 
3 -0.1633 ♦ i 0.2107 
4 j -0.2495 ♦ i 0.3913 

1 I -Oc06338 ♦ i 0.06518 
2 | -0,1733 ♦ i 0.3293 

1 1 -0,1038 ♦ i 0.2238 
2 i -0.1883 ♦ i 0.6934 

4 11; -0.0852 + i 0,4661 
2  -0.1275 ♦ i 1.1318 

ZO 

10 

t^-p<itf> I   z 
Fig. 6* Boots tfc corresponding to 

trapped and untrapped waves» 

The location of the real parts of the first three roots of the 

p(y) curve is shown on Fig. 6 for the first ease. We see that only the 

first root corresponds to the «trapped» wave in the usual interpreta- 

tion, the other two roots yield waves which easily emerge beyond the 

(24) 
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limit» of the inversion layer, from the geometrical optics viewpoint« 

However, these 'leakage' waves have slight attenuation and participate 

actively in the very-long propagation process. Let us recall that 

t^ ■ 1*17 ♦ 12,08 for nomal propagation so that the third wave at- 

tenuate* ten tines more slowly In this cass than the least attenuated 

wave under normal propagation conditions« all the roots correspond to 

the 'leakage' waves for the rest of the eases« 

let us transform (45) to a simple approximate fom which will 

permit comparison with other very-long propagation theoriss« Let us 

start with the »trapped* wavss which have almost real t between 

p(y^) and p(0) (such as the first root in Table 4) and, therefore, 

have negative values of V • For V > 0, we put 

(47) (-/)eiir ,  in y - LJ (-^ ♦ IV 

Then we will have in addition to (10) 

(4ft) X(V) as V 

and we obtain from (5) 

(49) ■>-■¥" 
where 

(50) \  ■ J  iWr) -t dy 

and y^ denotes the least positive root of (4)< 

into account (45) beooass 

(25) 

fcüdng thsse formulas 
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(51) i exp^) - X(/) 

If V is large and negative (strongly trapped waves) then we 

obtain the following more simple equation because of (48) 

(52) S^ ■ (B-i)ff|  m ■ 1,2,... 

which corresponds to the known characteristic equation of trapped 

waves (set 01» P» 20). 

Now, let us imagine that V  is positive or oomplex with positive 

real part, i.e., Re t < p(y^) or Be At -* 0. In this ease, it is not 

possible to determine the quantity S^ by using (50), if only because it 

is not known which of the complex roots y^ and y2 should be taken. 

However, inverting (49)* we can always determine S by using the 

relation: 

(53) *i 0  2 

and we again obtain (51) from (45)« Since we will always have XV)-* 1 

for a suitable ehoiee of are f[as in (47)] and for |y|-+«* with the 

exception of arc y ■ - ~ and, moreover, X(0) «■ f/z,  then we can 

consider X(V)   ■ 1 as a first, quite rough approximation for the 

'leakage* wave and we again obtain (52). 

Let us note that the simplified equation (52) is also suitable for 

normal propagation when it is necessary to put p(y) » y and y^ « t 

in (50). We thus obtain from (52)        ^ 

(54) t* - [|(.-iy]exp(J|) 
(26) 

: 

\ 
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which corresponds approximately to the roots of the characteristic 

equation for the honogeneous atmosphere. 

In order to verify (52), we calculated the value of S^ for the 

roots which we found according to (53) and we obtained the following 

numbers as a results 

Table 5 

Ho. (*-£#- h V 

1 1 
2 
3 
4 

2 1 
2 

3 1 
2 

4 1 
2 

2.356 
5.498 
8.639 

U.781 

2.356 
5.498 

2.356 
5.498 

2.356 
5.498 

2.326 - i 0.001 
8.537 ♦ i 0.047 
9.646 ♦ 1 0.009 

11.784 ♦ i 0.005 

2.444 ♦ 1 0.062 
5.501 ♦ i 0.0U 

2.315 ♦ 1 O.OU 
5.516 ♦ i 0.014 

2.436 ♦ i 0.079 
5.499 ♦ i 0.007 

-0.768 - i 0.0014 
0.459 - i 0.398 
1.178-11.519  ! 
1.800 - i 2.821 

0.317 - i 0.376 
0.867 - 11.646 

0.360 - i 0.776 
0.656 - i 2.402 

0,207 - i 1.120 
0.319 - i 2.718 

Hence! by calculating S^ for the roots found, we can ascribe the 

subscript ft to it by using the approximate relation (53). 

Shown en Fig. 7 is the attenuation factor in deep shade calculated 

by using the residue 

series for the first ease. 

Figure 7 shows that the 

first tern of the residue 

series, which corresponds 

«^__ 5   to the pole U, only de- 
anfao * 

Fig. 7. Depeirtenc* of the attenuation    termines the attenuation 
factor fi on * in the deep shade as 
calculated using the residue series. 

(27) 
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factor for £  > 150, i.e., for ?, - cm waves at • > 1000 km. Since 

the first term has negligible attenuation, then the absolute value of 

the attenuation factor will be almost constant at such long ranges, the 

asymptote on Fig, 7 is almost horizontal. Let us note that the attenua- 

tion factor approaches the asymptote completing the attenuation of the 

oscillations in the deep shade on Fig. 7. These oscillations caused 

the interference of the first and second 'simple naves'. 

Hence, the first simple wave with the least attenuation is excited 

very slightly by a wave incident from above onto the tropospheric wave- 

guide because of which this simple wave can have a decisive value only 

at very long ranges. The second and the third, in part, terms of the 

residue series have fundamental value near the F^ and F2 horisons. 

This phenomenon must have a general character since if the simple wave 

Is 'trapped« (see above) and almost does not leak out of the inversion 

layer (which is explained by its negligible attenuation) then it is 

almost not excited by radiators above the inversion layer according to 

reciprocity considerations. Waves with large attenuation to a large 

degree penetrate the space above the inversion layer, consequently, they 

are excited more strongly and play a fundamental part near the horizons • 

Because of the circumstance noted, the 1 ^ and 1 2 horisons 

actually determine (although in an approximate enough sense) long dis- 

tance radiowave propagation even for strongly expressed superrefraction, 

as is seen from Fig. 7» 

(28) 
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The residue series it usually used as the basis for analyzing 

▼•ry long propagation« Here it is assisted that only trapped waves can 

have low attanuation (JBf Atm> 0). Actually, wares which 'leak1 also 

attenuate slightly In a number of cases (Is Atffl<0). Consequently, 

waves which are several tines longer than the »critical» wavelength «^ 

defined according to &3 (p. 25ft) contribute to very long propagation 

in a tropospberie waveguide» 

la conclusion, let us note that several of the first terns of the 

residue series, as computations showed, permit the attenuation factor 

to be calculated until it almost joins the reflection formula and, hence, 

gets rid of calculations la quadratures (see Section 3)« 

7. NUMERICAL RESULTS FOR A CONCRETE CASE 

In order to facilitate the physical analysis of the numerical 

results which we obtained la Section 5, we consider the corresponding 

concrete ease herein. 

The M-profile shown on Fig« ft can be taken as an example and the 

attenuation factor 7^ can be 

constructed for the following 

wavelengths: 1) 3»33 cm; 2) 10 

onj 3) 30 emi 4) 90 cm as is 

done in Fig« 9» The numbers on 

the curves of Fig« 9 indicate 

the wavelengths listed here« Z      3   Mfo)-Mfy> 
Fig« ft«   Dependence of h« on M 

(X - profile) 
hj, - 46.5 »|  I» ftftM) mj H - 930.5 
«(hi) - 153.5; «CO) - Uikj) - 0.3«1. 

(29) 



The lower horizontal scale is the range s in kilometers and the upper 

is the angle 0 in degrees (see Pig. 2). The left vertical scale is 

the lglvj (to the base 10) and the right hand scale is for values 

of |VX| . 

-05 

-1,0 

-»5 

-U 

-25 

Is/,* 

05 
0-3 
0.1 
0.1 

e.o5 

0.o3 
0.»J> 

0.0' 

»5  W>  25  SO 35 40 «5 «O  S5£ 
Figo 9« Dependence of the attenuation factor V^ on C 

for the wavelengths: 1 - 3,33 omj 2-10 em; 

3 - 30 en; 4 - 90 cm, 

Let us note that the dispersion was not taken into account in our 

computationsc We assume that the M curve has the same shape for all 

four wavelengths for which the attenuation factor V^ is given on Fig. 9, 

The M curve on Fig. 8 is constructed according to the hyperbolic 

law 

(55) M(h) - «Ob)«i £-=M 
^  a h ♦ I 

in which 

(56) M(hj) •   i n iti 

Two parameters are included in the hyperbolic law: h^ and t  with the 

dimensionality of a height and related to the nondlmensional constants 

y^ and y in (18) by means of the relations 

(30) 
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(57) 

In which h^ It the height of the inversion point or, what it the MM, 

the height of th« atmospheric waveguide, A« is easily shown, tho 

height 

(5«) H - 1^ ♦ I    (l   - *£) 

determine• tho radius of curvature of tho M curve at the inversion point, 

also narked off along tho horisontal axis of Pig. 9 is the horiaon 

T0 for propagation in a homogeneous atmosphere. This horiaon is deter- 

mined by the height of tho observation point h and is independent of 

the wavelength! Let us note that we have taken h "-i-b^ here. The 

point T\ determines the position of the ground wave horiaon on eaeh 

curve and the point T2 determines the position of the horiaon for 

waves reflected from the earth (Sections 2 and 4)* The P. and TL 

horizons vary as the wavelengths vary and, consequently, for each curve 

itself. 

In all oases tho phenomenon of very long radiowave propagation at- 

tenuated as the wavelength increases can bo expressed. Taking into 

account the intense variation of the wavelength when making the tran- 

sition from one curve to another (the wavelengths are in the It3*9*2? 

ratio), it should bo recognized that tho dependence of tho attenuation 

factor on tho wavelength is comparatively slight near tho horiaon. 

(») 



The wavelength enters into the formula for the distance to the 

horizon (see f2l, Section 5) only under the logarithm, Consequently, 

the distances to the horizons generate an arithmetic progression if 

the wavelengths, as in Pig. 9» generate a geometric progression« Here, 

however, the values of the attenuation factor at both the X\ and the 

1*2 horisons depend on the wavelength to the same degree as for normal 

radiowave propagation (see Table 2), 

Because of these circumstances, to identify the remoteness of 

radiowave propagation with the remoteness of the hoxdson of the ground 

and reflected waves must be done with some care« The distance of 

propagation can be defined otherwise, for example, as that range in 

1 |    which the attenuation factor has the absolute value 0*1, where the 

values of the attenuation factor are still less at longer distances. 

Por this last definition, the «distance of propagation* is included 

between the distances of the T\ and I\ horizons for the Curve 1 on 

Pig, 9 and for the other curves, this distance is less than the dis- 

tance Iji as seen from the figure, these four distances generate an 

arithmetic progression in a very rough approximation. Let us note that 

it is usually sufficient to compute only by using the reflection formula 

of Section 4 and by extrapolating the curves thus obtained in order to 

estimate the distance of propagation according to the 0.1 value. 

The direct purpose of this paper (see Section 1) was to verify the 

formulas for the distance of radiowave propagation derived in ($J. We 

have shown above that a simple ar/ graphic picture of very-long radiowave 

(32) 
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propagation la the presence of an inversion layer can be obtained by 

introducing the horizons of the direct and reflected «ares. However, 

the distance of propagation can oMy be Identified with the distance of 

one of the horisons in only a sufficiently rough sense. The faot is 

that the decrease in the attenuation factor (after the oscillations 

terminate in the line-«f-sight region) starts earlier than we arrive 

at the first horison. Consequently, as shown in Section 5, the attenu- 

ation factor 1^ takes values on the i^ and T*2 horisons which are 2 - 

4 tines less than at the usual V   horison for propagation in a homo- 

geneous atmosphere. Moreover, the attenuation factor decreases near 

the J i and l2 horisons much »ore slowly, understandably, than for 

normal propagation« 

All these causes reduce to the P^ and 12 horisons characterising 

the distance of radlowave propagation acre roughly for anomalous propa- 

gation than does the I0 horison under normal propagation. However, the 

possibility of using the V^ and i 2 horisons for an approximate esti- 

mate of the distance of propagation does not cause doubts, as is seen 

if only from a comparison of the attenuation factors near the horisons 

and in deep shade on Fig. 7« 

It should be stressed that the M-profile we chose has a weak enough 

inversion! the difference M(0) - XCh^) does not exceed several tenths. 

In certain cases, such an inversion can remain unestablished in practise. 

However, our calculations show that even such an M-profile radically 

alters the character of radlowave propagation and leads to wry long 

propagation. 

Leningrad University April 27, 1956 

(33) 
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Appendix A 

APPROXIMATE BOUNDARY CONDITIONS FOR THE 

ELECTROMAGNETIC FIELD ON THE SURFACE 

OF A GOOD CONDUCTOR 

M. A. Leontovich 

The approximate boundary conditions on the surface of bodies 

which have a large complex permittivity have found application in 

solving a number of problems concerning the propagation of elec- 

tromagnetic waves. *  In view of the fact that a very detailed derivation 

of such boundary conditions has yet to be published, this present 

paper derives these boundary conditions and indicates the limits of 

their applicability. 

1.   As we know, the problem of the propagation of electromag- 

netic waves when "ideally conducting" bodies are present reduces to 

the solution of the problem involved in the propagation of a field 

outside these bodies under specific boundary conditions at the surface 

of these bodies (the tangential components of the E* vector are equal 

to zero).    The problems involving the propagation of a field outside 

good conductors (or, in general, outside bodies with a permittivity 

which has a large modulus) can also, under known conditions, be 

approximately reduced to the solution of the Maxwell equations for 

external (with respect to these bodies) space when homogeneous 

boundary conditions obtain at the surfaces of these bodies. 

~~"    * la"   L. Al'pert, Application to Losses in Waveguides. 
J.Tech.Phys.(No.  16)10:1358,  1940. 

The approximate boundary conditions being examined here are 
atuo given in a book by A. N. Shchukin titled "The Propagation of 
Radio Waves," 1940, p. 50, but the fully developed applications of 
these boundary conditions are not given. 
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If the complex dielectric (or magnetic) permeability of the body 

has a large modulus, then the wavelength inside the body (and in the 
case of an absorbing body the depth of penetration of the field into 
the body) will be small, so that inside the body the conditions obtain 
for the application of geometric optics.   If, in addition to this, the 
field varies slowly from point to point on the surface of the body on 
the scale of a wavelength inside the body, and there are no sources 
inside the body, then the field in the vicinity of the surface (inside 
the body) will consist of a wave which is propagated and attenuated 
in the direction of the normal to the surface (into the interior) of the 
body.   This wave* generally speaking, is not a plane wave, but its 
radius of curvature is large in comparison to the wavelength of the 
wave in the body and the depths of its penetration.   Therefore to a 
first approximation the electric and magnetic vectors in the body 
are parallel to the surface of the wave; they lie in the plane which 
is tangent to the surface of the body and are related with one another 
in the same way that the electric and magnetic vectors are related 
in a plane wave (that is, 

1 -^[ft HJ 

where %fi» the external normal to the surface of the body; € and p 
are the complex electric and magnetic permeabilities of the body). 

Since the tangential components of £ and H are continuous, the 
tangential components of E and H are related by the same expression 
on the external side of the surface of the body; it therefore follows 
that the following boundary conditions are fulfilled there: 

&*v? fe a wJ c) 
Introducing the coordinate system (x,, v,,s) which is such that x. 

and jr lie in the plane which is tangent to the surface of the body at 
the point being investigated, and the JB axis is directed into the 



interior of the body, it is possible to write these boundary conditions 

in the following manner: 

■K E   * 
y -#v (2) 

2.    Our problem consists of making the limits of applicability 

for these boundary conditions more precise and of evaluating the errors 

which are associated with the use of these boundary conditions.   We 

must therefore, in the first place, evaluate errors which are asso- 

ciated with the depiction of the field in the form of a wave which is 

propagated into the interior of the body according to the laws of 

geometric optics, and« in the second place» we must clarify under 

what conditions this field can be represented in the form of a wave 

of this type.   The answer to the first problem is contained in a paper 

by S. M. Rytov. *   We shall reproduce here the results ofhis paper 

in  the form required for our analysis. 

We shall examine a body with a complex permittivity   e, with a 

magnetic -permeability n» both of which vary from point to poi it in 

the body.   Here we shall assume that the complex index of refraction 

vT? is a quantity which has a large modulus everywhere in the body. 

Therefore, we assume that 

where q is a small parameter. 

Having written the Maxwell equations: 

-ik€£* = CurlH,        ikuH = CurlE (3) 

(k is the wave number in a vacuum, and the time function is assumed 

to be of the form e" w ) in the following form: 
"*5~M. Rvtov.»J. Exot. andTheor. Phvs.    (No. 2)    10{  180, (1940). 
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- ik \fc (yCi) S Curl (VJTH) + ^TH.flnuJ , 

ik^JI (7f ft) . Curl (Vc2) ♦ £&££,?lne] . 
^  <*l 

and having taken yC2 andv/TH in the capacity of the field vectors, 
we can convince ourselves of the the fact that the large quantity e 
or p   is only included in the formx/Ip; however tKe quantities g 

11 and |i taken separately are included in the form — yt and-- ^4 
(i.e., only their relative variations have an effect). 

In order to compose a solution which yields an approximation of 
geometric optics we therefore assume that 

**J^«$- + " (5) 

and making use of formula (4), we obtain the following equations: 

(6) 

vÄ* +«jr(y^ B^W-^ÜcurlB 4y [S, ^lnuj 

jfct> ^ - vB = -flJcurlA + ±\Z,V\nk] ' 

The solution for A and B is sought in the form of a power series of q: 

A * A,   + qA. 4 q A, ■* ... 

1* m "So + qSj + q2B*2 + ... 

Then we obtain the following system of equations: 

(7) 

U  .  < vAo 4^, BJ. 0; ^ Aj - vB0 « 0 (8) 
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vA. + !fr*'fi]s-ir =r . 1 CurlBo+nBo^ln^]; 1 
(9) 

vA2 + 

7   do) 

4^. A] - vB^ « ^jCurl A0 +|[Ä^, ?ln€] |   5 

-&*» *2] - vB2* iT|Curiri ♦i[v *ln€]|, 

The zero-approximation Eqs.  (9) yiftld the approximation of 

geometric optics.    The condition for this solvability is the "eikonal 

equation" 

2       2 2 
(11) 

from which the complex function f{%,j, z) myst be determined.   At the 

surface of the body the tangential components of the field in the body 

must coincide with the tangential components on its external surface. 

Since we assume that the field outside the body varies slowly, 

it follows that # = 0 on the surface of the body.   From this it follows 

that the real and imaginary parts of rj/ are proportional to one another: 

surfaces with equal phases and equal amplitudes inside the body 

(in this zero-approximation) coincide, and the normals to these 

surfaces at points lying on the surface of the body coincide with the 

normal to the surface of the body. 

Thus it is true in this case that 

y ty a - Inkv, (12) 
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where a is the external normal to th- surface of the body.   Equatioia(8) 
provide the the relationship between tne field vectors, and this re- 
lationship is the same as that for a plane wave; thus it follows that 
to the degree that we can limit ourselves to this approximation, the 
conclusion drawn in §1 is valid.   In order to find the boundaries of 
applicability for this derivation it is necessary to calculate the sub- 
sequent approximations.   The corresponding calculations are made 
in the paper by S. M. Rytov which we have cited above.   Making use 
of formula (34) of this paper and introducing the a. and x *xes *» ta« 
tangent plane which are directed along the main cross sections of the 
surface of the body, we obtain the following condition (us const) 
instead of the boundary Condition (1), (2): 

£ x ^(»■Js(iV^)    ,u> 
and a corresponding one for E  •   Here p. and p, are the main radii 
of curvature to the surface at the point being examined.   From this 
expression it is evident that we will obtain a correction of the 
order of—-and *■ \ '    d (d is the depth of penetration).   Wien the 
main radii of curvature are equal the curvature does not yield any 
correction in this approximation; in addition, the correction asso- 
ciated with an inhomogeneity depends solely upon the variation of f 
along the normal. 

For a plane surface of a homogeneous body the first-order 
corrections are equal to aero, and in order to evaluate the errors 
in this case it is necessary to calculate the second approximation. 
Making use of Formula (21) in the paper by S.M. Rytov, we obtain 
the boundary condition in the following form for this case: 

x #-• *M* 
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Let us note that if e and \x depend upon x. and x> il follows that 

the corresponding corrections are also included in this approximation. 

3.   In deriving all of the formulas in this section we made the 

following postulate:   the field on the external surface of the body varies 

slowly.   In order to answer the second question whic"> has been posed 

and in order to thus establish the limits of applicability of the boundary 

conditions (1) it is necessary to clarify when the above postulate is 

valid. 

We shall at first suppose that the body has a large absorption (i. e., 

we shall assume that /€ |A is complex and that im €|i. is a large quantity). 

In that case we can assert that the condition of a slow field variation 

when the wave traverses the surface of the body is fulfilled at all 

distances from the source which are large in comparison to a wave- 

length inside the body and in comparison to the depth of penetration d 

inside the body.   Even if the sources of the field are located on the very 

surface of the body, waves which are propagated in the body and which 

produc- a rapidly varying field will be attenuated at such distances. 

Thus the conditions for the applicability of the boundary Conditions(l) 

for absorbing bodies will be the following.   The depth of penetration 

into the body and the wavelength in it must be small in comparison to 

the wavelength in the surrounding space,  in comparison to the distances 

from the sources of the field and in comparison to the radii of curvature 

of the surface of the body.   Variations of e and \L of the body at a dis- 

tance equal to the wavelength in the body (or at a distance equal to the 

depth of penetration) are small. 

In the case where € and \i are both real and there is no absorption 

the situation is different, and the fulfillment of considerably more 

rigorous conditions is required in order for the boundary condition (1) 

to apply. 

In fact, in this case even if the sources lie far away from the 

surface of the body (outside it), waves may be present in the body which 

travel not only from the surface into the interior of the body but alto 
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from inside the body into the space outside.    For example,  if our 
body is a plane-parallel plate and is irradiated by a plane wave, then 
a wave will exist in it which is reflected from its rear surface and 
which travels in the direction of the forward surface.   Therefore the 
derivation of the boundary 'conditions (1) which was made above is 
inapplicable here. 

In the case where a body with large values of e and u has a plane 
boundary and occupies an infinite half-space (the other half-space is a 
vacuum) there will be no such waves; however in this case the boundary 
conditions are applicable only in the case when the sources are at 
distances from the body which are large in comparison with the wave- 
length in the vacuum.   However, if the source is located at the surface 
or close to the surface then, as we know, not only waves with a velocity 

jc. are propagated along the surface of the body, but also waves with a 
velocityjes which (from the upper side of the surface as well) create 
a rapidly varying field in the plane of the surface; thus in this case the 
assumption concerning the slow variations of the field on the external 
surface of the body (which we made in our derivation above) is untrue. 

In conclusion let us provide the result of the solution of the problem 
involved in the reflection of a plane wave from an infinite homogeneous 
half-space (\i = 1,   € is large); this solution is obtained by means of 
applying the approximate boundary conditions.   A coefficient of re- 
flection is obtained which is equal to the following expression: 

R = - 4 cos$ - 1 

JEcosTTT' 
v o 

where $ is the angle of incidence.   A comparison with the accurate 
Fresnel expression: 
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shows that an error is obtained   which is in complete agreement with 
our general derivations; this error applies for real values of € and is 
of the order of-^-sin   <j> 

•I 
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